871 resultados para U.S. Fish and Wildlife Service.
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
Includes executive summary.
Resumo:
"Federal aid project F-27-R, U.S. Fish and Wildlife Service."
Resumo:
Prepared for the Cache River Joint Venture Partnership (JVP): Illinois Department of Natural Resources, The Nature Conservancy, U.S. Fish and Wildlife Service, Ducks Unlimited, Natural Resources Conservation Service.
Resumo:
Cover title.
Resumo:
Federal aid project F-35-R, U.S. Fish and Wildlife Service.
Resumo:
Issued Aug. 1978.
Resumo:
Contains multiple subseries.
Resumo:
Title from caption.
Resumo:
"August 1996."
Resumo:
"April 2000."
Resumo:
"August 1997."
Resumo:
Charles Perry and Nathaniel Reed in Mesa Verde cave, Arizona. Charles Edward Perry (Chuck), 1937-1999, was the founding president of Florida International University in Miami, Florida. He grew up in Logan County, West Virginia and graduated from Bowling Green State University. He married Betty Laird in 1961. In 1969, at the age of 32, Perry was the youngest president of any university in the nation. The name of the university reflects Perry’s desire for a title that would not limit the scope of the institution and would support his vision of having close ties to Latin America. Perry and a founding corps opened FIU to 5,667 students in 1972 with only one large building housing six different schools. Perry left the office of President of FIU in 1976 when the student body had grown to 10,000 students and the university had six buildings, offered 134 different degrees and was fully accredited. Charles Perry died on August 30, 1999 at his home in Rockwall, Texas. He is buried on the FIU campus in front of the Graham Center entrance. Reed, Nathaniel P. (Nathaniel Pryor), 1933- serves on the Board of the National Geographic Society, the Everglades Foundation where he is Vice Chairman, and the Hope Rural School for migrant children. He received a B.A. from Trinity College in Connecticut. He was an officer in the U.S. Air Force and was Assistant Secretary of the Interior for the U.S. Fish and Wildlife Service as well as the U.S. Parks Service. He has also served on the boards of the National Audubon Society, the Nature Conservancy, the National Parks and Conservation Association, and the American Rivers. He is a board member emeriti of the Natural Resources Defense Council and 1000 Friends of Florida. He served on various environmental organization and committees under seven different governors in the state of Florida including as Chairman of the Commission on Florida’s Environmental Future. In 1972 he received the Cornelius Amory Pugsley National Medal Award.
Resumo:
Our research sought to address the extent to which the northern snakehead (Channa argus), an invasive fish species, represents a threat to the Potomac River ecosystem. The first goal of our research was to survey the perceptions and opinions of recreational anglers on the effects of the snakehead population in the Potomac River ecosystem. To determine angler perceptions, we created and administered 113 surveys from June – September 2014 at recreational boat ramps along the Potomac River. Our surveys were designed to expand information collected during previous surveys conducted by the U.S. Fish and Wildlife Service. Our results indicated recreational anglers perceive that abundances and catch rates of target species, specifically largemouth bass, have declined since snakehead became established in the river. The second goal of our research was to determine the genetic diversity and potential of the snakehead population to expand in the Potomac River. We hypothesized that the effective genetic population size would be much less than the census size of the snakehead population in the Potomac River. We collected tissue samples (fin clippings) from 79 snakehead collected in a recreational tournament held between Fort Washington and Wilson’s Landing, MD on the Potomac River and from electrofishing sampling conducted by the Maryland Department of Natural Resources in Pomonkey Creek, a tributary of the Potomac River. DNA was extracted from the tissue samples and scored for 12 microsatellite markers, which had previously been identified for Potomac River snakehead. Microsatellite allele frequency data were recorded and analyzed in the software programs GenAlEx and NeEstimator to estimate heterozygosity and effective genetic population size. Resampling simulations indicated that the number of microsatellites and the number of fish analyzed provided sufficient precision. Simulations indicated that the effective population size estimate would expect to stabilize for samples > 70 individual snakehead. Based on a sample of 79 fish scored for 12 microsatellites, we calculated an Ne of 15.3 individuals. This is substantially smaller than both the sample size and estimated population size. We conclude that genetic diversity in the snakehead population in the Potomac River is low because the population has yet to recover from a genetic bottleneck associated with a founder effect due to their recent introduction into the system.