941 resultados para Typhus fever
Resumo:
Brazilian spotted fever is caused by the bacterium Rickettsia rickettsii, which is the most pathogenic species of the spotted-fever rickettsiae group and is transmitted by the bite of infected ticks. Amblyomma cajennense is the most important tick species involved in the cycle of this zoonosis in Brazil as it presents low host specificity, great number of natural reservoirs and wide geographic distribution. It was first described in the state of São Paulo in 1929 and later in Rio de Janeiro, Minas Gerais and Bahia. The number of cases decreased in the 1940's with the development of new plague control techniques and antibiotics. In the last decades, the number of new cases has increased. The current review aimed at reporting some of the epidemiological and public health aspects of this reemergent disease with new foci, mainly in the southeastern region of Brazil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. The effect of endotoxin, interleukin-1 beta and prostaglandin on fever response was studied in 80 broilers (Hubbard strain). Endotoxin (E. coli, LPS) was injected iv (1.5 mu g/kg) and icv (1.5 mu g/bird); interleukin-1 (human recombinant IL-1 beta, 80 pg/bird) and prostaglandin E(2) (5 mu g/bird) were injected icv. Indomethacin (10 mg/kg, iv) pretreatment was also used before iv endotoxin injection. 2. The results showed that indomethacin was able to block the fever response induced by iv endotoxin injection, and IL-1 beta and PGE(2) were both effective in producing fever when injected icv. These data suggest a prostaglandin-mediated fever response by broilers, and also a strong evidence of the involvement of endogenous pyrogen (interleukin-1) in fever response in birds.
Resumo:
The study of the in-situ cellular immune response is very important for the understanding of different liver infections. In the present study, 53 liver samples obtained by viscerotomy from patients who died during the course of jungle yellow fever were analyzed. The diagnosis was confirmed by serology, viral isolation and virus-specific immunohistochemistry. The specimens were analyzed by immunohistochemistry using specific antibodies for apoptosis, CD45RO, CD4, CD8, CD20, S100, CD57 and CD68. Quantitative analysis of the labeling pattern showed a clear predominance of the different phenotypes in the portal tract and midzone region of the acini. There was a predominance of T CD4+ lymphocytes, accompanied by the presence of T CD8+ lymphocytes, natural killer cells (CD57), macrophages and antigen-presenting cells (S100). The disproportion between the intensity of inflammation and the degree of hepatic injury was probably due to the intense apoptotic component, which classically does not induce an inflammatory response. The present study demonstrates that, despite the disproportion between injury and inflammation, the cellular immune response plays an important role in the pathogenesis of the hepatocytic injury observed in yellow fever, probably as a result of cytolytic actions through mechanisms involving MHC II and the activation of Fas receptors and granzymes/perforins. (C) 2006 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study was aimed at testing the hypothesis that serotoninergic receptors in the locus coeruleus (LC) play a role in bacterial lipopolysaccharide-induced fever. To this end, 5-HT1A (WAY-100635; 3 mu g/100 nL) and 5-HT2A (ketanserin; 2 mu g/100 nL) antagonists were microinjected into the LC and body temperature was monitored by biotelemetry. Intra-LC microinjections of ketanserin or WAY-100635 caused no change in body temperature of euthermic animals. 5-HT2A antagonism abolished the first phase of the lipopolysaccharide-induced fever. Taken together, these results indicate that serotonin acting on 5-HT2A receptors in the LC mediates the first phase of the febrile response, whereas 5-HT1A receptors are not involved in the lipopolysaccharide-induced fever.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The development of a fever in response to intravenous (IV, 1.5 μg/kg body mass) and intracerebroventricular (ICV, 1.5 μg/animal) injections of Escherichia coli lipopolysaccharide (LPS) was studied in control, thyroidectomised and protein-calorie malnourished rabbits (New Zealand Whites, n = 55). ICV injection of LPS is control rabbits produced a fever response, the characteristics of which differed from those obtained after IV pyrogen injection. Thyroid deficiency caused an attenuated fever response, irrespective of whether LPS had been administered by IV or ICV injection. Protein-calorie malnourished rabbits showed a smaller fever response after IV or ICV pyrogen injections. Malnourished rabbits, refed over a period of 15 days, showed a typical biphasic fever response, but with lower magnitude than controls. The results of these experiments suggest that ICV injection of LPS is not an appropriate model for the study of fever mechanisms in disease states, and that the attenuated fever response observed in protein-calorie malnourished rabbits may be related, at least in part, to a decreased ability to produce the endogenous pyrogen interleukin-1.
Resumo:
Background: Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. Methods. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. Results: In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role in YFV replication. Conclusions: Although the precise function of eIF3L on interactions with viral proteins is not entirely understood, these results indicate an interaction of eIF3L with YF NS5 and that eIF3L overexpression facilitates translation, which has potential implications for virus replication. © 2013 Morais et al.; licensee BioMed Central Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The assessment of yellow fever vaccine thermostability both in lyophilized form and after reconstitution were analyzed. Two commercial yellow fever vaccines were assayed for their thermal stability. Vaccines were exposed to test temperatures in the range of 8 (graus) C to 45 (graus) C. Residual infectivity was measured by a plaque assay using Vero cells. The titre values were used in an accelerated degradation test that follows the Arrhenius equation and the minimum immunizing dose was assumed to be 10 (ao cubo) particles forming unit (pfu)/dose. Some of the most relevant results include that (i) regular culture medium show the same degradation pattern of a reconstituted 17D-204 vaccine; (ii) reconstituted YF-17D-204 showed a predictable half life of more than six days if kept at 0 (graus) C; (iii) there are differences in thermostability between different products that are probably due to both presence of stabilizers in the preparation and the modernization in the vaccine production; (iv) it is important to establish a proper correlation between the mouse infectivity test and the plaque assay since the last appears to be more simple, economical, and practical for small laboratories to assess the potency of the vaccine, and (v) the accelerated degradation test appears to be the best procedure to quantify the thermostability of biological products.