851 resultados para Types of discourse. Writing production situations. Didactic collections
Resumo:
He II UPS and XPS study of oxygen adsorption on Ni and barium-dosed Ni and Cu surfaces at 300 K show two types of oxygen species which are assigned to O2- and O1- (ad).
Resumo:
Farmlets, each of 20 cows, were established to field test five milk production systems and provide a learning platform for farmers and researchers in a subtropical environment. The systems were developed through desktop modelling and industry consultation in response to the need for substantial increases in farm milk production following deregulation of the industry. Four of the systems were based on grazing and the continued use of existing farmland resource bases, whereas the fifth comprised a feedlot and associated forage base developed as a greenfield site. The field evaluation was conducted over 4 years under more adverse environmental conditions than anticipated with below average rainfall and restrictions on irrigation. For the grazed systems, mean annual milk yield per cow ranged from 6330 kg/year (1.9 cows/ha) for a herd based on rain-grown tropical pastures to 7617 kg/year (3.0 cows/ha) where animals were based on temperate and tropical irrigated forages. For the feedlot herd, production of 9460 kg/cow.year (4.3 cows/ha of forage base) was achieved. For all herds, the level of production achieved required annual inputs of concentrates of similar to 3 t DM/animal and purchased conserved fodder from 0.3 to 1.5 t DM/animal. This level of supplementary feeding made a major contribution to total farm nutrient inputs, contributing 50% or more of the nitrogen, phosphorus and potassium entering the farming system, and presents challenges to the management of manure and urine that results from the higher stocking rates enabled. Mean annual milk production for the five systems ranged from 88 to 105% of that predicted by the desktop modelling. This level of agreement for the grazed systems was achieved with minimal overall change in predicted feed inputs; however, the feedlot system required a substantial increase in inputs over those predicted. Reproductive performance for all systems was poorer than anticipated, particularly over the summer mating period. We conclude that the desktop model, developed as a rapid response to assist farmers modify their current farming systems, provided a reasonable prediction of inputs required and milk production. Further model development would need to consider more closely climate variability, the limitations summer temperatures place on reproductive success and the feed requirements of feedlot herds.
Resumo:
A comprehensive set of new configurations for the holographic simulation of a wide variety of mirrors is described. These holographically simulated mirrors (HSMs) have been experimentally realized and their imaging performance has been studied.
Resumo:
To adapt to climate variability and a lack of irrigation water, businesses and growers in southern Australia, northern New South Wales and southern Queensland are, or are considering, migrating their businesses to northern Australia.
Resumo:
Since its initial description as a Th2-cytokine antagonistic to interferon-alpha and granulocyte-macrophage colony-stimulating factor, many studies have shown various anti-inflammatory actions of interleukin-10 (IL-10), and its role in infection as a key regulator of innate immunity. Studies have shown that IL-10 induced in response to microorganisms and their products plays a central role in shaping pathogenesis. IL-10 appears to function as both sword and shield in the response to varied groups of microorganisms in its capacity to mediate protective immunity against some organisms but increase susceptibility to other infections. The nature of IL-10 as a pleiotropic modulator of host responses to microorganisms is explained, in part, by its potent and varied effects on different immune effector cells which influence antimicrobial activity. A new understanding of how microorganisms trigger IL-10 responses is emerging, along with recent discoveries of how IL-10 produced during disease might be harnessed for better protective or therapeutic strategies. In this review, we summarize studies from the past 5 years that have reported the induction of IL-10 by different classes of pathogenic microorganisms, including protozoa, nematodes, fungi, viruses and bacteria and discuss the impact of this induction on the persistence and/or clearance of microorganisms in the host.
Resumo:
A cross-sectional study was conducted between October 2011 and March 2012 in two major pig producing provinces in the Philippines. Four hundred and seventy one pig farms slaughtering finisher pigs at government operated abattoirs participated in this study. The objectives of this study were to group: (a) smallholder (S) and commercial (C) production systems into patterns according to their herd health providers (HHPs), and obtain descriptive information about the grouped S and C production systems; and (b) identify key HHPs within each production system using social network analysis. On-farm veterinarians, private consultants, pharmaceutical company representatives, government veterinarians, livestock and agricultural technicians, and agricultural supply stores were found to be actively interacting with pig farmers. Four clusters were identified based on production system and their choice of HHPs. Differences in management and biosecurity practices were found between S and C clusters. Private HHPs provided a service to larger C and some larger S farms, and have little or no interaction with the other HHPs. Government HHPs provided herd health service mainly to S farms and small C farms. Agricultural supply stores were identified as a dominant solitary HHP and provided herd health services to the majority of farmers. Increased knowledge of the routine management and biosecurity practices of S and C farmers and the key HHPs that are likely to be associated with those practices would be of value as this information could be used to inform a risk-based approach to disease surveillance and control. © 2014 Elsevier B.V.
Resumo:
Oxidative potential (OP) is related to the organic phase, specifically to its oxygenated organic fraction (OOA). Furthermore, the oxygen content of fuel molecules has significant influence on particulate OP. Thus, this study aimed to explore the actual dependency of the OOA and ROS to the oxygen content of the fuel. In order to reach the goal, different biodiesels blends, with various ranges of oxygen content; have been employed. The compact time of flight aerosol mass spectrometer (c-ToF AMS) enabled better identification of OOA. ROS monitored by using two assays: DTT and BPEA-nit. Despite emitting lower mass, both assays agreed that oxygen content of a biodiesel is directly correlated with its OOA, and highly related to its OP. Hence, the more oxygen included in the considered biodiesels, the higher the OP of PM emissions. This highlights the importance of taking oxygen content into account while assessing emissions from new fuel types, which is relevant from a health effects standpoint.
Resumo:
Structures of a variety of compounds isolated in reactions and elucidated with the help of spectral (uv,ir,nmr and mass) data, have been discussed. In a few cases, the assigned structures were confirmed by x-ray crystal structure analysis.
Resumo:
Marine species generally have large population sizes, continuous distributions and high dispersal capacity. Despite this, they are often subdivided into separate populations, which are the basic units of fisheries management. For example, populations of some fisheries species across the deep water of the Timor Trench are genetically different, inferring minimal movement and interbreeding. When connectivity is higher than the Timor Trench example, but not so high that the populations become one, connectivity between populations is crinkled. Crinkled connectivity occurs when migration is above the threshold required to link populations genetically, but below the threshold for demographic links. In future, genetic estimates of connectivity over crinkled links could be uniquely combined with other data, such as estimates of population size and tagging and tracking data, to quantify demographic connectedness between these types of populations. Elasmobranch species may be ideal targets for this research because connectivity between populations is more likely to be crinkled than for finfish species. Fisheries stock-assessment models could be strengthened with estimates of connectivity to improve the strategic and sustainable harvesting of biological resources.
Resumo:
This paper deals with the problem of decoupling a class of linear time-varying multi-variable systems, based on the defining property that the impulse response matrix of a decoupled system is diagonal. Depending on the properties of the coefficient matrices of the vector differential equation of the open-loop system, the system may be uniformly or totally decoupled. The necessary and sufficient conditions that permit a system to be uniformly or totally decoupled by state variable feedback are given. The main contribution of this paper is the precise definition of these two classes of decoupling and a rigorous derivation of the necessary and sufficient conditions which show the necessity of requiring that the system be of constant ordered rank with respect to observability. A simple example illustrates the importance of having several definitions of decoupling. Finally, the results are specialized to the case of time invariant systems.
Resumo:
Abstract Biochar has significant potential to improve crop performance. This study examined the effect of biochar application on the photosynthesis and yield of peanut crop grown on two soil types. The commercial peanut cultivar Middleton was grown on red ferrosol and redoxi-hydrosol (Queensland, Australia) amended with a peanut shell biochar gradient (0, 0.375, 0.750, 1.50, 3.00 and 6.00 %, w/w, equivalent up to 85 t ha−1) in a glasshouse pot experiment. Biomass and pod yield, photosynthesis-[CO2] response parameters, leaf characteristics and soil properties (carbon, nitrogen (N) and nutrients) were quantified. Biochar significantly improved peanut biomass and pod yield up to 2- and 3-folds respectively in red ferrosol and redoxi-hydrosol. A modest (but significant) biochar-induced improvement of the maximumelectron transport rate and saturating photosynthetic rate was observed for red ferrosol. This response was correlated to increased leaf N and accompanied with improved soil available N and biological N fixation. Biochar application also improved the availability of other soil nutrients, which appeared critical in improving peanut performance, especially on infertile redoxihydrosol. Our study suggests that application of peanut shell derived biochar has strong potential to improve peanut yield on red ferrosol and redoxi-hydrosol. Biochar soil amendment can affect leaf N status and photosynthesis, but the effect varied with soil type.