989 resultados para Two-qubit photon beam
Resumo:
The present research studies the behavior of reinforced concrete locking beams supported by two capped piles with the socket embedded; used as connections for pre-cast concrete structures. The effect provoked by locking the beam on the pile-caps when supported by the lateral socket walls was evaluated. Three-dimensional numerical analyses using software based on the finite element method (FEM) were developed considering the nonlinear physical behavior of the material. To evaluate the adopted software, a comparative analysis was made using the numerical and experimented results obtained from other software. In the pile caps studied, a variation in the wall thickness, socket interface, strut angle inclination and action on beam. The results show that the presence of a beam does not significantly change pile cap behavior and that the socket wall is able to effectively transfer the force from the beam to the pile caps. By the tensions on the bars of longitudinal reinforcement, it was possible to obtain the force on the tie and the strut angle inclination before the collapse of models. It was found that the angles present more inclinations than those used in the design, which was made based on a strut-and-tie model. More results are available at http://www.set.eesc.usp.br/pdf/download/2009ME_RodrigoBarros.pdf
Resumo:
We study the interaction of a two-level atom with two lasers of different frequencies and amplitudes: a strong laser of Rabi frequency 2 Ohm(1) on resonance with the atomic transition, and a weaker laser detuned by subharmonics (2 Ohm(1)/n) of the Rabi frequency of the first. We find that under these conditions the second laser couples the dressed states created by the first in an n-photon process, resulting in doubly dressed states and in a ''multiphoton ac Stark'' effect. We calculate the eigenstates of the doubly dressed atom and their energies, and illustrate the role of this multiphoton ac Stark effect in its fluorescence, absorption, and Autler-Townes spectra. [S1050-2947(98)07607-0].
Resumo:
We study the implications for two-Higgs-doublet models of the recent announcement at the LHC giving a tantalizing hint for a Higgs boson of mass 125 GeV decaying into two photons. We require that the experimental result be within a factor of 2 of the theoretical standard model prediction, and analyze the type I and type II models as well as the lepton-specific and flipped models, subject to this requirement. It is assumed that there is no new physics other than two Higgs doublets. In all of the models, we display the allowed region of parameter space taking the recent LHC announcement at face value, and we analyze the W+W-, ZZ, (b) over barb, and tau(+)tau(-) expectations in these allowed regions. Throughout the entire range of parameter space allowed by the gamma gamma constraint, the numbers of events for Higgs decays into WW, ZZ, and b (b) over bar are not changed from the standard model by more than a factor of 2. In contrast, in the lepton-specific model, decays to tau(+)tau(-) are very sensitive across the entire gamma gamma-allowed region.
Resumo:
The rigorous and transparent treatment of the effects of nuclear vibrational motion in two-photon absorption (TPA) was discussed. Perturbation formula for diatomic molecules were developed and applied to the X¹Σ+–A¹Π transition in CO. The analysis showed that the vibrations played an important role in TPA, just as their role in the calculation of conventional nonlinear optical (NLO) hyperpolarizabilities
Resumo:
We have investigated the mechanisms leading to two and three body photon absorption in nuclei. At photon energies around the pion production threshold we obtain a fraction of three body absorption of less than 10% of the total, contradicting previous theoretical claims that it dominates the absorption process. The strength of the three body channel grows smoothly with the photon energy reaching a maximum of about 60% of the total direct absorption at energies of the photon around 400 MeV.
Resumo:
Recent reports have indicated that 23.5% of the nation's highway bridges are structurally deficient and 17.7% are functionally obsolete. A significant number of these bridges are on the Iowa secondary road system where over 86% of the rural bridge management responsibilities are assigned to the counties. Some of the bridges can be strengthened or otherwise rehabilitated, but many more are in need of immediate replacement. In a recent investigation (HR-365 "Evaluation of Bridge Replacement Alternatives for the County Bridge System") several types of replacement bridges that are currently being used on low volume roads were identified. It was also determined that a large number of counties (69%) have the ability and are interested in utilizing their own forces to design and construct short span bridges. In reviewing the results from HR-365, the research team developed one "new" bridge replacement concept and a modification of a replacement system currently being used. Both of these bridge replacement alternatives were investigated in this study, the results of which are presented in two volumes. This volume (Volume 1) presents the results of Concept 1 - Steel Beam Precast Units. Concept 2 - Modification of the Beam-in-Slab Bridge is presented in Volume 2. Concept 1, involves the fabrication of precast units (two steel beams connected by a concrete slab) by county work forces. Deck thickness is limited so that the units can be fabricated at one site and then transported to the bridge site where they are connected and the remaining portion of the deck placed. Since Concept 1 bridge is primarily intended for use on low-volume roads, the precast units can be constructed with new or used beams. In the experimental part of the investigation, there were three types of static load tests: small scale connector tests, "handling strength" tests, and service and overload tests of a model bridge. Three finite element models for analyzing the bridge in various states of construction were also developed. Small scale connector tests were completed to determine the best method of connecting the precast double-T (PCDT) units. "Handling strength" tests on an individual PCDT unit were performed to determine the strength and behavior of the precast unit in this configuration. The majority of the testing was completed on the model bridge [L=9,750 mm (32 ft), W=6,400 mm (21 ft)] which was fabricated using the precast units developed. Some of the variables investigated in the model bridge tests were number of connectors required to connect adjacent precast units, contribution of diaphragms to load distribution, influence of position of diaphragms on bridge strength and load distribution, and effect of cast-in-place portion of deck on load distribution. In addition to the service load tests, the bridge was also subjected to overload conditions. Using the finite element models developed, one can predict the behavior and strength of bridges similar to the laboratory model as well as design them. Concept 1 has successfully passed all laboratory testing; the next step is to field test it.
Resumo:
This project continues the research which addresses the numerous bridge problems on the Iowa secondary road system. It is a continuation (Phase 2) of Project HR-382, in which two replacement alternatives (Concept 1: Steel Beam Precast Units and Concept 2: Modification of the Benton County Beam-in-Slab Bridge) were investigated. In previous research for concept 1, a precast unit bridge was developed through laboratory testing. The steel-beam precast unit bridge requires the fabrication of precast double-tee (PCDT) units, each consisting of two steel beams connected by a reinforced concrete deck. The weight of each PCDT unit is minimized by limiting the deck thickness to 4 in., which permits the units to be constructed off-site and then transported to the bridge site. The number of units required is a function of the width of bridge desired. Once the PCDT units are connected, a cast-in-place reinforced concrete deck is cast over the PCDT units and the bridge railing attached. Since the steel beam PCDT unit bridge design is intended primarily for use on low-volume roads, used steel beams can be utilized for a significant cost savings. In previous research for concept 2, an alternate shear connector (ASC) was developed and subjected to static loading. In this investigation, the ASC was subjected to cyclic loading in both pushout specimens and composite beam tests. Based on these tests, the fatigue strength of the ASC was determined to be significantly greater than that required in typical low volume road single span bridges. Based upon the construction and service load testing, the steel-beam precast unit bridge was successfully shown to be a viable low volume road bridge alternative. The construction process utilized standard methods resulting in a simple system that can be completed with a limited staff. Results from the service load tests indicated adequate strength for all legal loads. An inspection of the bridge one year after its construction revealed no change in the bridge's performance. Each of the systems previously described are relatively easy to construct. Use of the ASC rather than the welded studs significantly simplified the work, equipment, and materials required to develop composite action between the steel beams and the concrete deck.
Resumo:
This project continues the research which addresses the numerous bridge problems on the Iowa secondary road system. It is a continuation (Phase 2) of Project HR-382, in which two replacement alternatives (Concept 1: Steel Beam Precast Units and Concept 2: Modification of the Benton County Beam-in-Slab Bridge) were investigated. In previous research for concept 1, a precast unit bridge was developed through laboratory testing. The steel-beam precast unit bridge requires the fabrication of precast double-tee (PCDT) units, each consisting of two steel beams connected by a reinforced concrete deck. The weight of each PCDT unit is minimized by limiting the deck thickness to 4 in., which permits the units to be constructed off-site and then transported to the bridge site. The number of units required is a function of the width of bridge desired. Once the PCDT units are connected, a cast-in-place reinforced concrete deck is cast over the PCDT units and the bridge railing attached. Since the steel beam PCDT unit bridge design is intended primarily for use on low-volume roads, used steel beams can be utilized for a significant cost savings. In previous research for concept 2, an alternate shear connector (ASC) was developed and subjected to static loading. In this investigation, the ASC was subjected to cyclic loading in both pushout specimens and composite beam tests. Based on these tests, the fatigue strength of the ASC was determined to be significantly greater than that required in typical low volume road single span bridges. Based upon the construction and service load testing, the steel-beam precast unit bridge was successfully shown to be a viable low volume road bridge alternative. The construction process utilized standard methods resulting in a simple system that can be completed with a limited staff. Results from the service load tests indicated adequate strength for all legal loads. An inspection of the bridge one year after its construction revealed no change in the bridge's performance. Each of the systems previously described are relatively easy to construct. Use of the ASC rather than the welded studs significantly simplified the work, equipment, and materials required to develop composite action between the steel beams and the concrete deck.
Resumo:
Because of the heavily overlapping symptoms, pathogen-specific diagnosis and treatment of infectious diseases is difficult based on clinical symptoms alone. Therefore, patients are often treated empirically. More efficient treatment and management of infectious diseases would require rapid point-of-care compatible in vitro diagnostic methods. However, current point-of-care methods are unsatisfactory in performance and in cost structure. The lack of pointof- care methods results in unnecessary use of antibiotics, suboptimal use of virus-specific drugs, and compromised patient care. In this thesis, the applicability of a two-photon excitation fluorometry is evaluated as a tool for rapid detection of infectious diseases. New separation-free immunoassay methodologies were developed and validated for the following application areas: general inflammation markers, pathogen-specific antibodies, pathogen-specific antigens, and antimicrobial susceptibility testing. In addition, dry-reagent methodology and nanoparticulate tracers are introduced in context to the technique. The results show that the new assay technique is a versatile tool for rapid detection of infectious diseases in many different application areas. One particularly attractive area is rapid multianalyte testing of respiratory infections, where the technique was shown to allow simple assay protocols and comparable performance to the state-of-the-art laboratory methods. If implemented in clinical diagnostic use, the new methods could improve diagnostic testing routines, especially in rapid testing of respiratory tract infections.
Resumo:
In this work we report the observation of the blue visible fluorescence at 420 nm in rubidium vapour as a result of two-photon absorption excited by femtosecond laser pulses 790 nm. After experimental investigation of the spa-tial and spectral characteristics of the obtained emission we can claim that mechanism of this coherent fluorescence at 420 nm was not caused by ampli-fied spontaneous emission, but represents the nondegenerate four-wave mixing. As a probable outcome of this investigation an opportunity of creation an ultrafast all-optical switcher might appear.
Resumo:
Control of the world-wide spread of methicillin-resistant Staphylococcus aureus (MRSA) has been unsuccessful in most developed countries. A few countries have been able to maintain a low MRSA prevalence, plausibly due to their strict MRSA control policies. Such policies require wide-scale screening of patients with suspected MRSA colonization, in order to nurse the MRSA-positive patients in contact isolation. The aim of this study was to develop and introduce a 2-photon excited fluorescence detection (TPX) technique for screening of MRSA directly from clinical samples. The assay principle involves specific online immunometric monitoring of S. aureus growth under selective antibiotic pressure. After the novel TPX approach had been set up, its applicability for the detection of MRSA was evaluated using a large MRSA collection including practically all epidemic MRSA strains identified in Finland between 1991 and 2009. The TPX assay was found both sensitive (97.9%) and specific (94.1%) in this epidemiological setting, illustrating that the method is tolerant to wide biological variation as well as to environments with rapidly emerging MRSA strains. When MRSA was screened directly from colonization samples, all patients positive for MRSA by conventional methods were positive also by the TPX assay. The assay capacity was 48 samples per a test run, and the median time required for confirmation of a true-positive screening test result was 3 h 26 min. Collectively, the findings presented in this thesis suggest that the TPX MRSA screening assay could be applicable for direct screening of MRSA colonization samples without any prior steps of isolation. This can potentially mean that contact isolation of suspected carriers testing negative could be discontinued earlier, thereby reducing the costs and burden associated with the containment of MRSA. In case of infection, a positive test result would ensure an early onset of effective therapy.
Resumo:
Il est relativement bien établi que les crises focales entraînent une augmentation régionale du flot sanguin dans le but de soutenir la demande énergétique en hémoglobine oxygénée des neurones épileptiques. Des changements hémodynamiques précoces ont également été rapportés dans la région homologue controlatérale, bien que ceci ait été moins bien caractérisé. Dans cette étude, notre objectif est de mieux caractériser, lors de crises focales, la nature des changements hémodynamiques précoces dans la région homologue controlatérale au foyer épileptique. L'imagerie optique intrinsèque (IOI) et la microscopie deux-photons sont utilisées pour étudier les changements hémodynamiques dans la région homologue controlatérale au site de crises focales induites par l’injection de 4-aminopyridine (4-AP) dans le cortex somatosensitif ipsilatéral de souris. Dans l'étude d'IOI, des changements de l’oxyhémoglobine (HbO), de la désoxyhémoglobine (HbR) et du débit sanguin cérébral ont été observées dans la région homologue controlatérale au site de crises focales lors de toutes les crises. Toutefois, ces changements étaient hétérogènes, sans patron cohérent et reproduisible. Nos expériences avec la microscopie deux-photons n’ont pas révélé de changements hémodynamiques significatifs dans la région homotopique controlatérale lors de trains de pointes épileptiques. Nos résultats doivent être interprétés avec prudence compte tenu de plusieurs limitations: d’une part absence de mesures électrophysiologiques dans la région d’intérêt controlatérale au foyer simultanément à l’imagerie deux-photons et à l'IOI; d’autre part, lors des expériences avec le deux-photons, incapacité à générer de longues décharges ictales mais plutôt des trains de pointes, couverture spatiale limitée de la région d’intérêt controlatérale, et faible puissance suite au décès prématuré de plusieurs souris pour diverses raisons techniques. Nous terminons en discutant de divers moyens pour améliorer les expériences futures.