926 resultados para Two-dimensional model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence (PL) and time-resolved photoluminescence (TRPL) were used to study optical emissions of ultrathin InAs layers with average layer thickness ranging from 1/12 to 1 ML grown on GaAs substrates. We have found that the inhomogeneous broadening of the PL from InAs layers can be well described by the quantum-well model with InAs islands coupling to each other and being regarded as a quasiwell. From the temperature dependence of the exciton linewidth, the exciton-LO-phonon scattering coefficient was found to be comparable to that in conventional two-dimensional quantum wells. In the TRPL measurements, the PL decay time increases linearly with temperature, which is a typical characteristic of free excitons in quantum wells. All these results indicate that the excitons localized in InAs exhibit two-dimensional properties of quantum wells, despite the topographical islandlike structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional quantum model based on the solution of Schrodinger and Poisson equations is first presented for In0.52Al0.48As/In0.53Ga0.47As/InP HEMT. According to the model, the two-dimensional distributions of electron density and transverse electric field in the channel of InAlAs/InGaAs HEMT are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Instabilities of fluid flows have traditionally been investigated by normal mode analysis, i.e. by linearizing the equations of flow and testing for unstable eigenvalues of the linearized problem. However, the results of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In this paper we study the instabilities of two-dimensional Couette flow of a polymeric fluid in the framework of non-modal stability theory rather than normal mode analysis. A power-law model is used to describe the polymeric liquid. We focus on the response to external excitations and initial conditions by examining the pseudospectra structures and the transient energy growths. For both Newtonian and non-Newtonian flows, the results show that there can be a rather large transient growth even though the linear operator of Couette flow has no unstable eigenvalue. The effects of non-Newtonian viscosity on the transient behaviors are examined in this study. The results show that the "shear-thinning/shear-thickening" effect increases/decreases the amplitude of responses to external excitations and initial conditions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer melts is proposed. Compared with models based on Ginzburg-Landau free energy, our model does not employ phenomenological free energies to describe systems and can consider the chain topological details of polymers. We use this model to study the effects of hydrodynamic interactions on the dynamics of microphase separation for block copolymers. In the early stage of phase separation, an exponential growth predicted by Cahn-Hilliard treatment is found. Simulation results also show that the effect of hydrodynamic interactions can be neglected in the early stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of hydrodynamic interactions on the lamellar ordering process for two-dimensional quenched block copolymers in the presence of extended defects and the topological defect evolutions in lamellar ordering process are numerically investigated by means of a model based on lattice Boltzmann method and self-consistent field theory. By observing the evolution of the average size of domains, it is found that the domain growth is faster with stronger hydrodynamic effects. The morphological patterns formed also appear different. To study the defect evolution, a defect density is defined and is used to explore the defect evolutions in lamellar ordering process. Our simulation results show that the hydrodynamics effects can reduce the density of defects. With our model, the relations between the Flory-Huggins interaction parameter chi, the length of the polymer chains N, and the defect evolutions are studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wave generation by the falling rock in the two-dimensional wave tank is experimentally and numerically studied, where the numerical model utilizes the boundary element method to solve the fully nonlinear potential flow theory. The wave profiles at different times are measured in the laboratory, which are also used to test the numerical model. Comparisons show that the experimental and numerical results are in good agreement, and the numerical model can be used to simulate the wave generation due to the submarine rock falling. Further numerical tests on the influences of the rock size, density, initial position and the falling angle on the wave elevation of the generated waves are performed, respectively. The results show that the size and density of the rock have strong effects on the maximum elevation of the generated wave, while the effects of the initial position and the falling angle of the rock are also significant. When the size or the density of the rock increases, the maximum elevation of the generated wave increases. The same effect on the generated wave would be produced if the initial position of the rock becomes closer to the surface, or the falling angle between the falling route and the vertical direction turns larger. In addition, the present numerical tests reveal that the submarine rock falling provides a new generation method for the breaking wave in the wave tank.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis addresses the problem of recognizing solid objects in the three-dimensional world, using two-dimensional shape information extracted from a single image. Objects can be partly occluded and can occur in cluttered scenes. A model based approach is taken, where stored models are matched to an image. The matching problem is separated into two stages, which employ different representations of objects. The first stage uses the smallest possible number of local features to find transformations from a model to an image. This minimizes the amount of search required in recognition. The second stage uses the entire edge contour of an object to verify each transformation. This reduces the chance of finding false matches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model is developed for predicting the resolution of interested component pair and calculating the optimum temperature programming condition in the comprehensive two-dimensional gas chromatography (GC x GC). Based on at least three isothermal runs, retention times and the peak widths at half-height on both dimensions are predicted for any kind of linear temperature-programmed run on the first dimension and isothermal runs on the second dimension. The calculation of the optimum temperature programming condition is based on the prediction of the resolution of "difficult-to-separate components" in a given mixture. The resolution of all the neighboring peaks on the first dimension is obtained by the predicted retention time and peak width on the first dimension, the resolution on the second dimension is calculated only for the adjacent components with un-enough resolution on the first dimension and eluted within a same modulation period on the second dimension. The optimum temperature programming condition is acquired when the resolutions of all components of interest by GC x GC separation meet the analytical requirement and the analysis time is the shortest. The validity of the model has been proven by using it to predict and optimize GC x GC temperature programming condition of an alkylpyridine mixture. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cox, S.J., Vaz, M.F. and Weaire, D. (2003) Topological changes in a two-dimensional foam cluster. The European Physical Journal E - Soft Matter . 11:29-35.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raufaste, C., Dollet, B., Cox, S., Jiang, Y. and Graner, F. (2007). Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction. European Physical Journal E, 23 (2), 217?228 Sponsorship: Y.J. is supported by US DOE under contract No. DE-AC52-06NA25396. S.C. is supported by EPSRC (EP/D071127/1)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel multi-scale seamless model of brittle-crack propagation is proposed and applied to the simulation of fracture growth in a two-dimensional Ag plate with macroscopic dimensions. The model represents the crack propagation at the macroscopic scale as the drift-diffusion motion of the crack tip alone. The diffusive motion is associated with the crack-tip coordinates in the position space, and reflects the oscillations observed in the crack velocity following its critical value. The model couples the crack dynamics at the macroscales and nanoscales via an intermediate mesoscale continuum. The finite-element method is employed to make the transition from the macroscale to the nanoscale by computing the continuum-based displacements of the atoms at the boundary of an atomic lattice embedded within the plate and surrounding the tip. Molecular dynamics (MD) simulation then drives the crack tip forward, producing the tip critical velocity and its diffusion constant. These are then used in the Ito stochastic calculus to make the reverse transition from the nanoscale back to the macroscale. The MD-level modelling is based on the use of a many-body potential. The model successfully reproduces the crack-velocity oscillations, roughening transitions of the crack surfaces, as well as the macroscopic crack trajectory. The implications for a 3-D modelling are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparison of fire field model predictions with experiment for the case of a fire within a compartment which is vented (buoyancydriven) to the outside by a single horizontal ceiling vent. Unlike previous work, the mathematical model does not employ a mixing ratio to represent vent temperatures but allows the model to predict vent temperatures a priori. The experiment suggests that the flow through the vent produces oscillatory behaviour in vent temperatures with puffs of smoke emerging from the fire compartment. This type of flow is also predicted by the fire field model. While the numerical predictions are in good qualitative agreement with observations, they overpredict the amplitudes of the temperature oscillations within the vent and also the compartment temperatures. The discrepancies are thought to be due to three-dimensional effects not accounted for in this model as well as using standard ‘practices’ normally used by the community with regards to discretization and turbulence models. Furthermore, it is important to note that the use of the k–ε turbulence model in a transient mode, as is used here, may have a significant effect on the results. The numerical results also suggest that a linear relationship exists between the frequency of vent temperature oscillation (n) and the heat release rate (Q0) of the type n∝Q0.290, similar to that observed for compartments with two horizontal vents. This relationship is predicted to occur only for heat release rates below a critical value. Furthermore, the vent discharge coefficient is found to vary in an oscillatory fashion with a mean value of 0.58. Below the critical heat release rate the mean discharge coefficient is found to be insensitive to fire size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel multiscale model of brittle crack propagation in an Ag plate with macroscopic dimensions has been developed. The model represents crack propagation as stochastic drift-diffusion motion of the crack tip atom through the material, and couples the dynamics across three different length scales. It integrates the nanomechanics of bond rupture at the crack tip with the displacement and stress field equations of continuum based fracture theories. The finite element method is employed to obtain the continuum based displacement and stress fields over the macroscopic plate, and these are then used to drive the crack tip forward at the atomic level using the molecular dynamics simulation method based on many-body interatomic potentials. The linkage from the nanoscopic scale back to the macroscopic scale is established via the Ito stochastic calculus, the stochastic differential equation of which advances the tip to a new position on the macroscopic scale using the crack velocity and diffusion constant obtained on the nanoscale. Well known crack characteristics, such as the roughening transitions of the crack surfaces, crack velocity oscillations, as well as the macroscopic crack trajectories, are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The glass transition in a quantum Lennard-Jones mixture is investigated by constant-volume path-integral simulations. Particles are assumed to be distinguishable, and the strength of quantum effects is varied by changing h from zero (the classical case) to one (corresponding to a highly quantum-mechanical regime). Quantum delocalization and zero point energy drastically reduce the sensitivity of structural and thermodynamic properties to the glass transition. Nevertheless, the glass transition temperature T-g can be determined by analyzing the phase space mobility of path-integral centroids. At constant volume, the T-g of the simulated model increases monotonically with increasing h. Low temperature tunneling centers are identified, and the quantum versus thermal character of each center is analyzed. The relation between these centers and soft quasilocalized harmonic vibrations is investigated. Periodic minimizations of the potential energy with respect to the positions of the particles are performed to determine the inherent structure of classical and quantum glassy samples. The geometries corresponding to these energy minima are found to be qualitatively similar in all cases. Systematic comparisons for ordered and disordered structures, harmonic and anharmonic dynamics, classical and quantum systems show that disorder, anharmonicity, and quantum effects are closely interlinked.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional mathematical model for evaluating the simultaneous heat and moisture migration in porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The numerical solution was based on the control volume finite difference technique with fully implicit scheme in time. Two validation experiments were developed in this study. The evolution of transient moisture distributions in both one-dimensional and two-dimensional cases was measured. A comparison between experimental results and those obtained by the numerical model proves that they are fully consistent with each other. The model can be easily integrated into a whole building heat, air and moisture transfer model. Another main advantage of the present numerical method lies in the fact that the required moisture transport properties are comparatively simple and easy to determine.