930 resultados para Two section
Resumo:
A method for separation of stresses in two and three-dimensional photo elasticity using the harmonisation ofjrst stress invariant along a straight section is deve- ,dped. For two-dimensions, the equations of equilibrium are reformulated in terms ojsum and difference of normal stresses and relations are obtained which can be used for harmonisation of the first invariant of stress along a straight section. A similar procedure is adopted for three-dimensions by making use of the Beltrmi-MicheN equations. The new relations are used in finite d~yerencefo rm to evaluate the sum of normal stresses along straight sections in a three-dimensional body. The method requires photoelastic data along the section as well ~rra djacent sections. This method could be used as an alternative to the shear d@erence method for separation of stresses in photoelasticity. 7he accuracy and reliability of the method is ver$ed by applying the method to problems whose solutions are known.
Resumo:
The rivet-fastened rectangular hollow flange channel beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange steel beams. To date, no investigation has been conducted on their web crippling behaviour and strengths. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of rivet fastened RHFCBs under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. Experimental results showed that the current design rules are unconservative for rivet fastened RHFCB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of rivet fastened RHFCBs.
Resumo:
At the Tevatron, the total p_bar-p cross-section has been measured by CDF at 546 GeV and 1.8 TeV, and by E710/E811 at 1.8 TeV. The two results at 1.8 TeV disagree by 2.6 standard deviations, introducing big uncertainties into extrapolations to higher energies. At the LHC, the TOTEM collaboration is preparing to resolve the ambiguity by measuring the total p-p cross-section with a precision of about 1 %. Like at the Tevatron experiments, the luminosity-independent method based on the Optical Theorem will be used. The Tevatron experiments have also performed a vast range of studies about soft and hard diffractive events, partly with antiproton tagging by Roman Pots, partly with rapidity gap tagging. At the LHC, the combined CMS/TOTEM experiments will carry out their diffractive programme with an unprecedented rapidity coverage and Roman Pot spectrometers on both sides of the interaction point. The physics menu comprises detailed studies of soft diffractive differential cross-sections, diffractive structure functions, rapidity gap survival and exclusive central production by Double Pomeron Exchange.
Resumo:
We present a measurement of the $WW+WZ$ production cross section observed in a final state consisting of an identified electron or muon, two jets, and missing transverse energy. The measurement is carried out in a data sample corresponding to up to 4.6~fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 1.96$ TeV collected by the CDF II detector. Matrix element calculations are used to separate the diboson signal from the large backgrounds. The $WW+WZ$ cross section is measured to be $17.4\pm3.3$~pb, in agreement with standard model predictions. A fit to the dijet invariant mass spectrum yields a compatible cross section measurement.
Resumo:
We present a search for a Higgs boson decaying to two W bosons in ppbar collisions at sqrt(s)=1.96 TeV center-of-mass energy. The data sample corresponds to an integrated luminosity of 3.0 fb-1 collected with the CDF II detector. We find no evidence for production of a Higgs boson with mass between 110 and 200 GeV/c^2, and determine upper limits on the production cross section. For the mass of 160 GeV/c^2, where the analysis is most sensitive, the observed (expected) limit is 0.7 pb (0.9 pb) at 95% Bayesian credibility level which is 1.7 (2.2) times the standard model cross section.
Resumo:
We report two complementary measurements of the WW+WZ cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using p\bar{p} collision data at sqrt{s} = 1.96 TeV collected by the CDF II detector. The first method uses the dijet invariant mass distribution while the second more sensitive method uses matrix-element calculations. The result from the second method has a signal significance of 5.4 sigma and is the first observation of WW+WZ production using this signature. Combining the results gives sigma_{WW+WZ} = 16.0 +/- 3.3 pb, in agreement with the standard model prediction.
Resumo:
A measurement of the $\ttbar$ production cross section in $\ppbar$ collisions at $\sqrt{{\rm s}}$ = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb$^{-1}$ is: $\sigma_{\ttbar}$ = 6.27 $\pm$ 0.73(stat) $\pm$ 0.63(syst) $\pm$ 0.39(lum) pb. for an assumed top mass of 175 GeV/$c^{2}$.
Resumo:
We report a measurement of the ratio of the tt̅ to Z/γ* production cross sections in √s=1.96 TeV pp̅ collisions using data corresponding to an integrated luminosity of up to 4.6 fb-1, collected by the CDF II detector. The tt̅ cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/γ*→ll cross section predicted by the standard model, the extracted tt̅ cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result σtt̅ =7.70±0.52 pb, for a top-quark mass of 172.5 GeV/c2.
Resumo:
Using data from 2.9 fb-1 of integrated luminosity collected with the CDF II detector at the Tevatron, we search for resonances decaying into a pair of on-shell gauge bosons, WW or WZ, where one W decays into an electron and a neutrino, and the other boson decays into two jets. We observed no statistically significant excess above the expected standard model background, and we set cross section limits at 95% confidence level on G* (Randall-Sundrum graviton), Z′, and W′ bosons. By comparing these limits to theoretical cross sections, mass exclusion regions for the three particles are derived. The mass exclusion regions for Z′ and W′ are further evaluated as a function of their gauge coupling strength.
Resumo:
When a fluid with memory is injected into any flow region some assumptions regarding the initial state of stress have to be made in order to determine the state of stress at any subsequent instant. For a Maxwell fluid, it is assumed that the fluid near the surface of injection is suddenly stressed and responds by starting flow in accordance with the mechanical model chosen. The flow of a Maxwell fluid with a single relaxation time has been determined under the above assumption in the following two cases: (i) annulus between two porous concentric circular cylinders, and (ii) space between two porous and infinitely extending parallel plates. The nature of flow in the present case is similar to that of the Reiner-Rivlin fluids obtained by Narasimhan2).
Resumo:
Using data from 2.9/fb of integrated luminosity collected with the CDF II detector at the Tevatron, we search for resonances decaying into a pair of on-shell gauge bosons, WW or WZ, where one W decays into an electron and a neutrino, and the other boson decays into two jets. We observed no statistically significant excess above the expected standard model background, and we set cross section limits at 95% confidence level on G*(Randall-Sundrum graviton), Z', and W' bosons. By comparing these limits to theoretical cross sections, mass exclusion regions for the three particles are derived. The mass exclusion regions for Z' and W' are further evaluated as a function of their gauge coupling strength.
Resumo:
We report a measurement of the ratio of the tt̅ to Z/γ* production cross sections in √s=1.96 TeV pp̅ collisions using data corresponding to an integrated luminosity of up to 4.6 fb-1, collected by the CDF II detector. The tt̅ cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/γ*→ll cross section predicted by the standard model, the extracted tt̅ cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result σtt̅ =7.70±0.52 pb, for a top-quark mass of 172.5 GeV/c2.
Resumo:
We report a measurement of the ratio of the top-antitop to Z/gamma* production cross sections in sqrt(s) = 1.96 TeV proton-antiproton collisions using data corresponding to an integrated luminosity of up to 4.6 fb-1, collected by the CDF II detector. The top-antitop cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/gamma*->ll cross section, the extracted top-antitop cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result sigma_(top-antitop) = 7.70 +/- 0.52 pb, for a top-quark mass of 172.5 GeV/c^2.
Resumo:
Bhatnagar and Rathna (Quar. Journ. Mech. Appl. Maths., 1963,16, 329) investigated the flows of Newtonian, Reiner-Rivlin and Rivlin-Ericksen fluids between two rotating coaxial cones. In case of the last two types of fluids, they predicted the breaking of secondary flow field in any meridian plane. We find that such breaking is avoided by the application of a sufficiently strong azimuthal magnetic field arising from a line current along the axis of the cones.