952 resultados para Tumor necrosis factor-alpha inhibitors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Deposition of beta-amyloid in the brains of patients with Alzheimer's disease is thought to precede a chain of events that leads to an inflammatory response by the brain. We postulated that genetic variation in the regulatory region of the gene for the proinflammatory cytokine tumour necrosis factor alpha (TNF-alpha) leads to increased risk of Alzheimer's disease and vascular dementia. METHODS: A polymorphism in the regulatory region of the TNF-alpha gene was analysed in a case-control study. The polymorphism (C-850T) was typed in 242 patients with sporadic Alzheimer's disease, 81 patients with vascular dementia, 61 stroke patients without dementia, and 235 normal controls. These groups of individuals were also genotyped for the apolipoprotein E polymorphism, and the vascular dementia and stroke groups were typed at the HLA-DR locus. FINDINGS: The distribution of TNF-alpha genotypes in the vascular dementia group differed significantly from that in the stroke and normal control groups, giving an odds ratio of 2.51 (95% CI 1.49-4.21) for the development of vascular dementia for individuals with a CT or TT genotype. Logistic regression analysis indicated that the possession of the T allele significantly increased the risk of Alzheimer's disease associated with carriage of the apolipoprotein E epsilon4 allele (odds ratio 2.73 [1.68-4.44] for those with apolipoprotein E epsilon4 but no TNF-alpha T, vs 4.62 [2.38-8.96] for those with apolipoprotein E epsilon4 and TNF-alpha T; p=0.03). INTERPRETATION: Possession of the TNF-alpha T allele significantly increases the risk of vascular dementia, and increases the risk of Alzheimer's disease associated with apolipoprotein E. Although further research is needed, these findings suggest a potential role for anti-inflammatory therapy in vascular dementia and Alzheimer's disease, and perhaps especially in patients who have had a stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few patients with Behçet's syndrome have gastrointestinal ulceration. Such patients are difficult to treat and have a higher mortality. Faced with refractory symptoms in two patients with intestinal Behçet's, we used the tumour necrosis factor alpha (TNF-alpha) monoclonal antibody infliximab to induce remission. Both women (one aged 27 years, the other 30 years) presented with orogenital ulceration, pustular rash, abdominal pain, bloody diarrhoea due to colonic ulceration, weight loss, and synovitis. One had thrombophlebitis, digital vasculitis, perianal fistula, and paracolic abscess; the other had conjunctivitis and an ulcer in the natal cleft. Treatment with prednisolone, methyl prednisolone, and thalidomide in one and prednisolone, colchicine, and cyclosporin in the other was ineffective. After full discussion, infliximab (3 mg/kg, dose reduced because of recent sepsis in one, and 5 mg/kg in the other) was administered. Within 10 days the ulcers healed, with resolution of bloody diarrhoea and all extraintestinal manifestations. A second infusion of infliximab was necessary eight weeks later in one case, followed by sustained (>15 months) remission on low dose thalidomide. Remission was initially sustained for 12 months in the other but thalidomide had to be stopped due to intolerance, and a good response to retreatment lasted only 12 weeks without immunosuppression, before a third infusion. The cause of Behçet's syndrome is unknown but peripheral blood CD45 gammadelta T cells in Behçet's produce >50-fold more TNF-alpha than controls when stimulated with phorbol myristate acetate and anti-CD3. Infliximab could have a role for inducing remission in Behçet's syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process.

Approach and Results: We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α–mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation.

Conclusions: Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α–mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AMPA receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNF alpha) have both been implicated in motor neurone vulnerability in Amyotrophic Lateral Sclerosis/Motor Neurone Disease. TNF alpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNF alpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/ml, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using Fura-2 AM microfluorimetry we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggests that TNF alpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in ALS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Soluble tumor necrosis factor receptors 1 and 2 (sTNFR1 and sTNFR2) contribute to experimental diabetic kidney disease, a condition with substantially increased cardiovascular risk when present in patients. Therefore, we aimed to explore the levels of sTNFRs, and their association with prevalent kidney disease, incident cardiovascular disease, and risk of mortality independently of baseline kidney function and microalbuminuria in a cohort of patients with type 2 diabetes. In pre-defined secondary analyses we also investigated whether the sTNFRs predict adverse outcome in the absence of diabetic kidney disease. METHODS: The CARDIPP study, a cohort study of 607 diabetes patients [mean age 61 years, 44 % women, 45 cardiovascular events (fatal/non-fatal myocardial infarction or stroke) and 44 deaths during follow-up (mean 7.6 years)] was used. RESULTS: Higher sTNFR1 and sTNFR2 were associated with higher odds of prevalent kidney disease [odd ratio (OR) per standard deviation (SD) increase 1.60, 95 % confidence interval (CI) 1.32-1.93, p < 0.001 and OR 1.54, 95 % CI 1.21-1.97, p = 0.001, respectively]. In Cox regression models adjusting for age, sex, glomerular filtration rate and urinary albumin/creatinine ratio, higher sTNFR1 and sTNFR2 predicted incident cardiovascular events [hazard ratio (HR) per SD increase, 1.66, 95 % CI 1.29-2.174, p < 0.001 and HR 1.47, 95 % CI 1.13-1.91, p = 0.004, respectively]. Results were similar in separate models with adjustments for inflammatory markers, HbA1c, or established cardiovascular risk factors, or when participants with diabetic kidney disease at baseline were excluded (p < 0.01 for all). Both sTNFRs were associated with mortality. CONCLUSIONS/INTERPRETATIONS: Higher circulating sTNFR1 and sTNFR2 are associated with diabetic kidney disease, and predicts incident cardiovascular disease and mortality independently of microalbuminuria and kidney function, even in those without kidney disease. Our findings support the clinical utility of sTNFRs as prognostic markers in type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dose-limiting diarrhea and myelosuppression compromise the success of irinotecan (7-ethyl-10-[4-[1-piperidino]-1-piperidino] carbonyloxycamptothecin) (CPT-11)-based chemotherapy. A recent pilot study indicates that thalidomide attenuates the toxicity of CPT-11 in cancer patients. This study aimed to investigate whether coadministered thalidomide modulated the toxicities of CPT-11 and the underlying mechanisms using several in vivo and in vitro models. Diarrhea, intestinal lesions, cytokine expression, and intestinal epithelial apoptosis were
monitored. Coadministered thalidomide (100 mg/kg i.p. for 8 days) significantly attenuated body weight loss, myelosuppression, diarrhea, and intestinal histological lesions caused by CPT-11 (60 mg/kg i.v. for 4 days). This was accompanied by inhibition of tumor necrosis factor-, interleukins 1 and 6 and interferon-, and intestinal epithelial apoptosis. Coadministered
thalidomide also significantly increased the systemic exposure of CPT-11 but decreased that of SN-38 (7-ethyl-10-hydroxycampothecin). It significantly reduced the biliary excretion and cecal exposure of CPT-11, SN-38, and SN-38 glucuronide. Thalidomide hydrolytic products inhibited hydrolysis of CPT-11 in rat liver microsomes but not in primary rat hepatocytes. In addition, thalidomide and its major hydrolytic products, such as phthaloyl glutamic acid (PGA), increased the intracellular accumulation of CPT-11 and SN-38 in primary rat hepatocytes. They also significantly decreased the transport of CPT-11 and SN-38 in Caco-2 and parental MDCKII cells. Thalidomide and PGA also significantly inhibited P-glycoprotein (PgP/MDR1), multidrug resistance-associated protein (MRP1)- and MRP2-mediated CPT-11 and SN-38 transport in MDCKII cells. These results provide insights into the pharmacodynamic and  pharmacokinetic mechanisms for the protective effects of thalidomide against CPT-11-induced intestinal toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) plays a role in the pathogenesis of chronic hepatitis B (CHB) and chronic hepatitis C (CHC). The difference in the cytokine responses between hepatitis B virus (HBV) and hepatitis C virus (HCV) infections may have implications in the pathogenesis of these diseases. We performed a comparative study to examine the possible differences in the TNF-TNF receptor (TNFR) response between CHB and CHC. We studied the cytokine levels of 38 patients with CHB, 40 patients with CHC and 9 patients with dual hepatitis B and C, and compared them with the baseline levels of 12 healthy controls. The plasma levels of TNF-, interferon-, interleukin (IL)-2, IL-4, IL-10 and soluble TNFR-1 and 2 (sTNFR-1 and 2) were quantified by enzyme-linked immunosorbent assays. The expression of TNFR-1 and 2 in liver tissues was examined in 30 cases of CHB and 15 cases of CHC by semiquantitative reverse transcription polymerase chain reaction. The results showed that sTNFR-1 levels correlated with liver inflammation in all patients, whereas this correlation was not found with sTNFR-2 or other cytokines. Liver inflammation indicators were higher in HCV RNA+ than in HCV RNA– CHC. Most significantly, sTNFR-1 levels correlated with liver inflammation in CHB, but not in CHC. However, the expression of TNFR-1 and 2 in liver was similar between CHB and CHC. These findings suggest that the TNFR signal transduction pathway is modulated differently in HBV and HCV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of cell-wall compounds in the immune response to sporotrichosis is unknown. The effect of cell-wall compounds and exoantigen obtained from Sporothrix schenckii in macrophage/fungus interaction was analysed with respect to nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha). The lipid compound of the cell wall plays an important role in the pathogenesis of this mycosis and was found to inhibit the phagocytic process and to induce high liberation of NO and TNF-alpha in macrophage cultures in the present study. This is a very interesting result because it is the first report about one compound of the fungus S. schenckii that presents this activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine-N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target ofTNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response. © 2011 Carvalho-Sousa, da Silveira Cruz-Machado, Tamura, Fernandes, Pinato, Muxel, Cecon and Markus.