923 resultados para Tumor Necrosis Factor-alpha -- metabolism
Resumo:
The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine-N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target ofTNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response. © 2011 Carvalho-Sousa, da Silveira Cruz-Machado, Tamura, Fernandes, Pinato, Muxel, Cecon and Markus.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.
Resumo:
Abstract Introduction Sclerostin levels have been reported to be low in ankylosing spondylitis (AS), but there is no data regarding the possible role of this Wnt inhibitor during anti-tumor necrosis factor (TNF) therapy. The present study longitudinally evaluated sclerostin levels, inflammatory markers and bone mineral density (BMD) in AS patients under anti-TNF therapy. Methods Thirty active AS patients were assessed at baseline, 6 and 12 months after anti-TNF therapy regarding clinical parameters, inflammatory markers, BMD and baseline radiographic damage (mSASSS). Thirty age- and sex-matched healthy individuals comprised the control group. Patients' sclerostin levels, sclerostin binding low-density lipoprotein receptor-related protein 6 (LRP6) and BMD were evaluated at the same time points and compared to controls. Results At baseline, AS patients had lower sclerostin levels (60.5 ± 32.7 vs. 96.7 ± 52.9 pmol/L, P = 0.002) and comparable sclerostin binding to LRP6 (P = 0.387) than controls. Improvement of Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Metrology Index (BASMI), Ankylosing Spondylitis quality of life (ASQoL) was observed at baseline vs. 6 vs. 12 months (P < 0.01). Concomitantly, a gradual increase in spine BMD (P < 0.001) and a positive correlation between baseline mSASSS and spine BMD was found (r = 0.468, P < 0.01). Inflammatory parameters reduction was observed comparing baseline vs. 6 vs. 12 months (P <0.01). Sclerostin levels progressively increased [baseline (60.5 ± 32.7) vs. 6 months (67.1 ± 31.9) vs. 12 months (72.7 ± 32.3) pmol/L, P <0.001]. At 12 months, the sclerostin levels remained significantly lower in patients compared to controls (72.7 ± 32.3 vs. 96.70 ± 52.85 pmol/L, P = 0.038). Moreover, sclerostin serum levels at 12 months were lower in the 10 patients with high C reactive protein (CRP) (≥ 5 mg/l) compared to the other 20 patients with normal CRP (P = 0.004). Of note, these 10 patients with persistent inflammation also had lower sclerostin serum levels at baseline compared to the other patients (P = 0.023). Univariate logistic regression analysis demonstrated that AS patients with lower sclerostin serum levels had an increased risk to have high CRP at 12 months (odds ratio = 7.43, 95% CI 1.23 to 45.01, P = 0.020) than those with higher sclerostin values. Conclusions Persistent low sclerostin levels may underlie continuous inflammation in AS patients under anti-TNF therapy.
Resumo:
A decline in cognitive ability is a typical feature of the normal aging process, and of neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases. Although their etiologies differ, all of these disorders involve local activation of innate immune pathways and associated inflammatory cytokines. However, clinical trials of anti-inflammatory agents in neurodegenerative disorders have been disappointing, and it is therefore necessary to better understand the complex roles of the inflammatory process in neurological dysfunction. The dietary phytochemical curcumin can exert anti-inflammatory, antioxidant and neuroprotective actions. Here we provide evidence that curcumin ameliorates cognitive deficits associated with activation of the innate immune response by mechanisms requiring functional tumor necrosis factor α receptor 2 (TNFR2) signaling. In vivo, the ability of curcumin to counteract hippocampusdependent spatial memory deficits, to stimulate neuroprotective mechanisms such as upregulation of BDNF, to decrease glutaminase levels, and to modulate N-methyl- D –aspartate receptor levels was absent in mice lacking functional TNFRs. Curcumin treatment protected cultured neurons against glutamate-induced excitotoxicity by a mechanism requiring TNFR2 activation. Our results suggest the possibility that therapeutic approaches against cognitive decline designed to selectively enhance TNFR2 signaling are likely to be more beneficial than the use of anti-inflammatory drugs per se.
Resumo:
Objective To evaluate the impact of tumour necrosis factor α (TNFα) blockers on the presence of liver fibrosis in patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA) treated with methotrexate (MTX). Methods Participants were consecutive patients with RA and PsA who had undergone MTX treatment for at least 1 year ± TNF blockade for over 6 months. Liver fibrosis was assessed using non-invasive transient elastography (FibroScan). Regression models were used to compare FibroScan values of patients with RA and patients with PsA receiving TNFα blockers with those who were not. Results FibroScan assessments were performed on 51 patients with RA and 43 patients with PsA. Compared to patients with RA, those with PsA were predominantly young men, received lower cumulative dosages of MTX and exhibited a higher incidence of liver steatosis and hyperlipidaemia. An abnormal result was observed in 7.1% of the anti-TNFα-naïve and in 13% of the anti-TNFα-treated patients in the RA group and in 30% of the anti-TNFα-naïve and 4.3% of the anti-TNFα-treated patients in the PsA group (OR=0.11, 95% CI 0.02 to 0.98). Results of the PsA group were robust when adjusted for baseline characteristics. Conclusion The results suggest a protective effect of TNFα inhibitors against the development of liver fibrosis in patients with PsA.
Resumo:
To test the hypothesis that the lectin-like domain of tumor necrosis factor, mimicked by the TIP peptide, can improve lung function after unilateral orthotopic lung isotransplantation. Because of a lack of a specific treatment for ischemia reperfusion-mediated lung injury, accompanied by a disrupted barrier integrity and a dysfunctional alveolar liquid clearance, alternative therapies restoring these parameters after lung transplantation are required.
Resumo:
Fas/CD95 is a critical mediator of cell death in many chronic and acute liver diseases and induces apoptosis in primary hepatocytes in vitro. In contrast, the proinflammatory cytokine tumor necrosis factor α (TNFα) fails to provoke cell death in isolated hepatocytes but has been implicated in hepatocyte apoptosis during liver diseases associated with chronic inflammation. Here we report that TNFα sensitizes primary murine hepatocytes cultured on collagen to Fas ligand (FasL)-induced apoptosis. This synergism is time-dependent and is specifically mediated by TNFα. Fas itself is essential for the sensitization, but neither Fas up-regulation nor endogenous FasL is responsible for this effect. Although FasL is shown to induce Bid-independent apoptosis in hepatocytes cultured on collagen, the sensitizing effect of TNFα is clearly dependent on Bid. Moreover, both c-Jun N-terminal kinase activation and Bim, another B cell lymphoma 2 homology domain 3 (BH3)-only protein, are crucial mediators of TNFα-induced apoptosis sensitization. Bim and Bid activate the mitochondrial amplification loop and induce cytochrome c release, a hallmark of type II apoptosis. The mechanism of TNFα-induced sensitization is supported by a mathematical model that correctly reproduces the biological findings. Finally, our results are physiologically relevant because TNFα also induces sensitivity to agonistic anti-Fas-induced liver damage. CONCLUSION: Our data suggest that TNFα can cooperate with FasL to induce hepatocyte apoptosis by activating the BH3-only proteins Bim and Bid.
Resumo:
OBJECTIVE: To examine whether the G-to-A polymorphism at position -308 in the promoter of the tumour necrosis factor-alpha (TNFalpha) gene influences the therapeutic response to TNFalpha-blockers in patients with rheumatoid arthritis (RA), psoriatic arthritis (PsA) and ankylosing spondylitis (AS). METHODS: A total of 54 patients with RA, 10 with PsA and 22 with AS were genotyped by polymerase chain reaction for the -308 TNFalpha promoter polymorphism. They were treated with infliximab (n = 63), adalimumab (n = 10) or etanercept (n = 13). Clinical response was assessed after 24 weeks by the Disease Activity Score in 28 joints (DAS28) for RA and PsA, and the Bath Ankylosing Spondylitis Activity Index (BASDAI) for AS patients. RESULTS: All patients with the A/A genotype (n = 3, all RA) and two patients with the A/G genotype (AS) failed to respond to anti-TNF treatment. Irrespective of the underlying disease, moderate response (n = 44) was predominantly associated with the A/G genotype (A/G 18/22, G/G 4/22), whereas good response (n = 59) was exclusively seen in patients with the G/G genotype. The average improvement in the DAS28 score was 0.83 in the A/A, 1.50 in the A/G and 2.64 in the G/G group of RA and PsA patients (P < 0.0001). The BASDAI score in AS improved on average by 1.21 in the A/G and by 3.30 in the G/G group (P < 0.005). CONCLUSIONS: The data suggest that humans with a TNFalpha -308 G/G genotype are better responders to anti-TNFalpha treatment than those with A/A or A/G genotypes independent of the treated rheumatic disease (RA, PsA or AS).
Resumo:
BACKGROUND: Atopic dermatitis (AD) is based on a genetic predisposition, but environmental factors may trigger skin inflammation. According to the hygiene hypothesis, decreased exposure to microbial products in early childhood does not allow sufficient maturation of the immune system that is associated with an increased risk of atopic sensitization. OBJECTIVES: The effect of lipopolysaccharide (LPS) on the cytokine production of peripheral blood mononuclear cells (PBMC) of AD patients and nonatopic controls was studied. PATIENTS AND METHODS: PBMC were isolated from heparinized blood of 10 patients with AD and 10 nonatopic individuals, suspended in culture medium and stimulated with LPS. Cytokine levels in the supernatants were measured by immunoassays. Results Upon stimulation with LPS, PBMC from AD patients produced significantly higher amounts of tumour necrosis factor-alpha, interferon-gamma and interleukin (IL)-10 compared with control PBMC. LPS stimulation blocked the increased spontaneous production of IL-4 and IL-5 by PBMC from AD patients, but had no effect on IL-13 production. CONCLUSIONS: These results demonstrate that the effects of LPS stimulation depend on both the type of cytokine and the origin of PBMC. Endotoxin exposure is suggested to modulate the disease course of AD.
Resumo:
Matrix metalloproteinases (MMPs) and tumour necrosis factor alpha (TNF-alpha) converting enzyme (TACE) contribute synergistically to the pathophysiology of bacterial meningitis. TACE proteolytically releases several cell-surface proteins, including the proinflammatory cytokine TNF-alpha and its receptors. TNF-alpha in turn stimulates cells to produce active MMPs, which facilitate leucocyte extravasation and brain oedema by degradation of extracellular matrix components. In the present time-course studies of pneumococcal meningitis in infant rats, MMP-8 and -9 were 100- to 1000-fold transcriptionally upregulated, both in CSF cells and in brain tissue. Concentrations of TNF-alpha and MMP-9 in CSF peaked 12 h after infection and were closely correlated. Treatment with BB-1101 (15 mg/kg subcutaneously, twice daily), a hydroxamic acid-based inhibitor of MMP and TACE, downregulated the CSF concentration of TNF-alpha and decreased the incidences of seizures and mortality. Therapy with BB-1101, together with antibiotics, attenuated neuronal necrosis in the cortex and apoptosis in the hippocampus when given as a pretreatment at the time of infection and also when administration was started 18 h after infection. Functionally, the neuroprotective effect of BB-1101 preserved learning performance of rats assessed 3 weeks after the disease had been cured. Thus, combined inhibition of MMP and TACE offers a novel therapeutic strategy to prevent brain injury and neurological sequelae in bacterial meningitis.