992 resultados para Trp-containing peptides


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three terminally protected tripeptides Boc-gamma-Abu-Val-Leu-OMe 1, Boc-gamma-Abu-Leu-Phe-OMe 2 and Boc-gamma-Abu-Val-Tyr-OMe 3 (gamma-Abu = gamma-aminobutyric acid) each containing an N-terminally positioned gamma-aminobutyric acid residue have been synthesized, purified and studied. FT-IR studies of all these peptides revealed that these peptides form intermolecularly hydrogen bonded supramolecular beta-sheet structures. Peptides 1, 2 and 3 adopt extended backbone beta-strand molecular structures in crystals. Crystal packing of all these peptides demonstrates that these beta-strand structures self-assemble to form intermolecularly H-bonded parallel beta-sheet structures. Peptide 3 uses a side chain tyrosyl -OH group as an additional hydrogen bonding functionality in addition to the backbone CONH groups to pack in crystals. Transmission electron microscopic studies of all peptides indicate that they self-assemble to form nanofibrillar structures of an average diameter of 65 nm. These peptide fibrils exhibit amyloid-like behavior as they bind to a physiological dye Congo red and show a characteristic green-gold birefringence under polarizing microscope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly of PEGylated peptides containing a modified sequence from the amyloid beta peptide, FEK LVFF, has been studied in aqueous solution. PEG molar masses PEG1k, PEG2k, and PEG10k were used in the conjugates. It is shown that the three FFK LVFF-PEG hybrids form fibrils comprising a FFKLVFF core and a PEG corona. The beta-sheet secondary structure of the peptide is retained in the FFK LVFF fibril core. At sufficiently high concentrations, FEK LVFF-PEG1k and FEK LVFF-PEG2k form a nema tic phase, while PEG10k-FEK LVFF exhibits a hexagonal columnar phase. Simultaneous small angle neutron scattering/shear flow experiments were performed to study the shear flow alignment of the nematic and hexagonal liquid crystal phases. On drying, PEG crystallization occurs without disruption of the FFK LVFF beta-sheet structure leading to characteristic peaks in the X-ray diffraction pattern and FTIR spectra. The stability of beta-sheet structures was also studied in blends of FFKLVFF-PEG conjugates with poly(acrylic acid) (PAA). While PEG crystallization is only observed up to 25% PAA content in the blends, the FFK LVFF beta-sheet structure is retained up to 75% PAA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-crystal X-ray diffraction studies of two terminally protected tetrapeptides Boc-Ile-Aib-Val-m-ABA-OMe (I) and Boc-Ile-Aib-Phe-m-ABA-OMe (II) (Aib = alpha-aminoisobutyric acid; m-ABA = meta-aminobenzoic acid) reveal that they form continuous H-bonded helices through the association of double-bend (type III and I) building blocks. NMR Studies support the existence of the double-bend (type Ill and I) structures of the peptides in solution also. Field emission scanning electron-microscopic (FE-SEM) and high-resolution transmission electron-microscopic (HR-TEM) images of the peptides exhibit amyloid-like fibrils in the solid state. The Congo red-stained fibrils of peptide I and II, observed between crossed polarizers, show green-gold birefringence, a characteristic of amyloid fibrils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly of tripeptides based on the RGD cell adhesion motif is investigated. Two tripeptides containing the Fmoc [N-(fluorenyl)-9-methoxycarbonyl] aromatic unit were synthesized, Fmoc-RGD and a control peptide containing a scrambled sequence, Fmoc-GRD. The Fmoc is used to control selfassembly via aromatic stacking interactions. The self-assembly and hydrogelation properties of the two Fmoc-tripeptides are compared. Both form well defined amyloid fibrils (as shown by cryo-TEM and SAXS) with b-sheet features in their circular dichroism and FTIR spectra. Both peptides form selfsupporting hydrogels, the dynamic shear modulus of which was measured. Preliminary cell culture experiments reveal that Fmoc-RGD can be used as a support for bovine fibroblasts, but not Fmoc- GRD, consistent with the incorporation of the cell adhesion motif in the former peptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly of amphiphilic peptides is reviewed. The review covers surfactant-like peptides with amphiphilicity arising from the sequence of natural amino acids, and also peptide amphiphiles (PAs) in which lipid chains are attached to hydrophilic peptide sequences containing charged residues. The influence of the secondary structure on the self-assembled structure and vice versa is discussed. For surfactant-like peptides structures including fibrils, nanotubes, micelles and vesicles have been reported. A particularly common motif for PAs is beta-sheet based fibrils, although other structures have been observed. In these structures, the peptide epitope is presented at the surface of the nanostructure, providing remarkable bioactivity. Recent discoveries of potential, and actual, applications of these materials in biomedicine and bionanotechnology are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The disruption of the human immunolobulin E–high affinity receptor I (IgE–FcεRI) protein–protein interaction (PPI) is a validated strategy for the development of anti asthma therapeutics. Here, we describe the synthesis of an array of conformationally constrained cyclic peptides based on an epitope of the A–B loop within the Cε3 domain of IgE. The peptides contain various tolan (i.e., 1,2-biarylethyne) amino acids and their fully and partially hydrogenated congeners as conformational constraints. Modest antagonist activity (IC50 660 μM) is displayed by the peptide containing a 2,2′-tolan, which is the one predicted by molecular modeling to best mimic the conformation of the native A–B loop epitope in IgE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins). A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. Results: An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus) microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1`. Conclusions: BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein degradation by the ubiquitin proteasome system releases large amounts of oligopeptides within cells. To investigate possible functions for these intracellularly generated oligopeptides, we fused them to a cationic transactivator peptide sequence using reversible disulfide bonds, introduced them into cells, and analyzed their effect on G protein-coupled receptor (GPCR) signal transduction. A mixture containing four of these peptides (20-80 mu M) significantly inhibited the increase in the extracellular acidification response triggered by angiotensin II (ang II) in CHO-S cells transfected with the ang II type 1 receptor (AT1R-CHO-S). Subsequently, either alone or in a mixture, these peptides increased luciferase gene transcription in AT1R-CHO-S cells stimulated with ang II and in HEK293 cells treated with isoproterenol. These peptides without transactivator failed to affect GPCR cellular responses. All four functional peptides were shown in vitro to competitively inhibit the degradation of a synthetic substrate by thimet oligopeptidase. Overexpression of thimet oligopeptidase in both CHO-S and HEK293 cells was sufficient to reduce luciferase activation triggered by a specific GPCR agonist. Moreover, using individual peptides as baits in affinity columns, several proteins involved in GPCR signaling were identified, including alpha-adaptin A and dynamin 1. These results suggest that before their complete degradation, intracellular peptides similar to those generated by proteasomes can actively affect cell signaling, probably representing additional bioactive molecules within cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bottleneck for the complete understanding of the structure-function relationship of flexible membrane-acting peptides is its dynamics. At the same time, not only the structure but also the dynamics are the key points for their mechanism of action. Our model is PW2, a TRP-rich, cationic peptide selected from phage display libraries that shows anticoccidial activity against Eimeria acervulina. In this manuscript we used a combination of several NMR techniques to tackle these difficulties. The structural features of the membrane-acting peptide PW2 was studied in several membrane mimetic environments: we compared the structural features of PW2 in SDS and DPC micelles, that were reported earlier, with the structure properties in different lipid vesicles and the peptide free in water. We were able to unify the structural information obtained in each of these systems. The structural constraints of the peptide free in water were fundamental for the understanding of plasticity necessary for the membrane interaction. Our data suggested that the WWR sequence is the region responsible for anchoring the peptide to the interfaces, and that this same region displays some degree of conformational order in solution. For PW2, we found that affinity is related to the aromatic region, by anchoring the peptide to the membrane, and specificity is related to the N- and C-termini, which are able to accommodate in the membrane due to its plasticity. (C) 2007 Elsevier B.V. All rights reserved.