1000 resultados para Tropospheric Ozone
Resumo:
Currently diverse industries have high pollution potential because their productive processes generate great volumes of refractory effluents. These effluents are problematic, mainly due to the presence of recalcitrant compounds that are detrimental in wastewater treatment plants using biological systems in their processes. In general, biological treatments do not remove refractory elements. Also, in most cases these compounds can inhibit the yield or are toxic for biota responsible to remove the polluting agents. The Advanced Oxidative Processes (AOPs) represent a technological alternative with a great potential for treatment of no biodegradable effluents. In this paper a review of the use of advanced oxidatives processes: Ozone (O(3)), peroxide of hydrogen (H(2)O(2)) and ultraviolet radiation (UV) is presented applied to the treatment of recalcitrant effluents.
Resumo:
The impact of ozone oxidation on removing high molecular weight (HMW) organics in order to improve the biodegradability of alkaline bleach plant effluent was investigated using a semi-batch reactor under different initial pH (12 and 7). After the ozonation process, the ratio of BOD5/COD increased from 0.07 to 0.16 and 0.22 for initial pH 12 and 7, respectively. Also, the effluent color decreased by 48% and 61% at initial pH 12 and pH 7, respectively. These changes were primarily driven by reductions of the HMW fractions of the effluent during ozonation.
Resumo:
Ozone is a major air pollutant with adverse health effects which exhibit marked inter-individual variability. In mice, regions of genetic linkage with ozone-induced lung injury include the tumor necrosis factor-alpha (TNF), lymphotoxin-alpha (LTA), Toll-like receptor 4 (TLR4), superoxide dismutase (SOD2), and glutathione peroxidase (GPX1) genes. We genotyped polymorphisms in these genes in 51 individuals who had undergone ozone challenge. Mean change in FEV1 with ozone challenge, as a percentage of baseline, was -3% in TNF -308G/A or A/A individuals, compared with -9% in G/G individuals (p = 0.024). When considering TNF haplotypes, the smallest change in FEV1 with ozone exposure was associated with the TNF haplotype comprising LTA +252G/TNF -1031T/TNF -308A/TNF -238G. This association remained statistically significant after correction for age, sex, disease, and ozone concentration (p = 0.047). SOD2 or GPX1 genotypes were not associated with lung function, and the TLR4 polymorphism was too infrequent to analyze. The results of this study support TNF as a genetic factor for susceptibility to ozone-induced changes in lung function in humans, and has potential implications for stratifying health risks of air pollution.
Resumo:
Journal of Applied Physics, Vol. 96, nº3
Resumo:
მოყვანილია ქალაქ თბილისში 1984-დან 2010 წლებში მიწისპირა ოზონის კონცენტრაციის საშუალო ნახევარწლიური და წლიური მონაცემების დეტალური სტატისტიკური ანალიზის შედეგები.
Resumo:
წარმოდგენილია მიწისპირა ოზონის საშუალოწლიური მონაცემების და სხვადასხვა ბალიანობის ხილვადობის სიშორის მქონე დღეების რიცხვს შორის კორელაციური და რეგრესიული კავშირის გამოკვლევის შედეგები 9, 12 და 15 საათზე დაკვირვებებისათვის.
Resumo:
Ground-based measurements of the parameters of atmosphere in Tbilisi during the same period, which are provided by the Mikheil Nodia Institute of geophysics, were used as calibration data. Satellite data monthly averaging, preprocessing, analysis and visualization was performed using Giovanni web-based application. Maps of trends and periodic components of the atmosphere aerosol optical thickness and ozone concentration over the study area were calculated.
La couche d'ozone entre mondialisation et développement durable. In ROSSEL P., BASSAND M., ROY M-A.,
Resumo:
The strong influence of the winter North Atlantic Oscillation (NAO) on the total ozone column (TOC) in the Northern Hemisphere has been reported in a number of previous studies. In this study we show that this influence is not restricted to the winter season but is also significant in summer. Especially interesting effects of the summer NAO (SNAO) on the TOC are observed over the eastern Mediterranean region, where a strongly positive SNAO index is related to the creation of a geopotential height-negative anomaly over Greece with maximum amplitude at 200 hPa. Another anomaly was observed west of the Iberian Peninsula with similar effects on the TOC. Analyzing 26 years of Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) data from the equator to midlatitudes (60°) in the Northern Hemisphere, we demonstrate that the SNAO accounts for up to 30% of the TOC variability with a strong latitudinal and longitudinal dependence. Additionally, we obtain significant correlations between the NAO index and the thermal tropopause pressure and also with the geopotential heights at 200 and 500 hPa. Finally, some indirect connections between NAO and the TOC through teleconnections are also discussed.