959 resultados para Tropical soil
Resumo:
Obtaining ecotoxicological data on pesticides in tropical regions is imperative for performing more realistic risk analysis, and avoidance tests have been proposed as a useful, fast and cost-effective tool. Therefore, the present study aimed to evaluate the avoidance behavior of Eisenia andrei to a formulated product, Vertimec(A (R)) 18 EC (a.i abamectin), in tests performed on a reference tropical artificial soil (TAS), to derive ecotoxicological data on tropical conditions, and a natural soil (NS), simulating crop field conditions. In TAS tests an adaptation of the substrate recommended by OECD and ISO protocols was used, with residues of coconut fiber as a source of organic matter. Concentrations of the pesticide on TAS test ranged from 0 to 7 mg abamectin/kg (dry weight-d.w.). In NS tests, earthworms were exposed to samples of soils sprayed in situ with: 0.9 L of Vertimec(A (R)) 18 EC/ha (RD); twice as much this dosage (2RD); and distilled water (Control), respectively, and to 2RD: control dilutions (12.5, 25, 50, 75%). All tests were performed under 25 +/- A 2A degrees C, to simulate tropical conditions, and a 12hL:12hD photoperiod. The organisms avoided contaminated TAS for an EC50,48h = 3.918 mg/kg soil d.w., LOEC = 1.75 mg/kg soil d.w. and NOEC = 0.85 mg/kg soil d.w. No significant avoidance response occurred for any NS test. Abamectin concentrations in NS were rather lower than EC50, 48h and LOEC determined in TAS tests. The results obtained contribute to overcome a lack of ecotoxicological data on pesticides under tropical conditions, but more tests with different soil invertebrates are needed to improve pesticides risk analysis.
Resumo:
This study aims to compare and validate two soil-vegetation-atmosphere-transfer (SVAT) schemes: TERRA-ML and the Community Land Model (CLM). Both SVAT schemes are run in standalone mode (decoupled from an atmospheric model) and forced with meteorological in-situ measurements obtained at several tropical African sites. Model performance is quantified by comparing simulated sensible and latent heat fluxes with eddy-covariance measurements. Our analysis indicates that the Community Land Model corresponds more closely to the micrometeorological observations, reflecting the advantages of the higher model complexity and physical realism. Deficiencies in TERRA-ML are addressed and its performance is improved: (1) adjusting input data (root depth) to region-specific values (tropical evergreen forest) resolves dry-season underestimation of evapotranspiration; (2) adjusting the leaf area index and albedo (depending on hard-coded model constants) resolves overestimations of both latent and sensible heat fluxes; and (3) an unrealistic flux partitioning caused by overestimated superficial water contents is reduced by adjusting the hydraulic conductivity parameterization. CLM is by default more versatile in its global application on different vegetation types and climates. On the other hand, with its lower degree of complexity, TERRA-ML is much less computationally demanding, which leads to faster calculation times in a coupled climate simulation.
Resumo:
In savannah and tropical grasslands, which account for 60% of grasslands worldwide, a large share of ecosystem carbon is located below ground due to high root:shoot ratios. Temporal variations in soil CO2 efflux (R-S) were investigated in a grassland of coastal Congo over two years. The objectives were (1) to identify the main factors controlling seasonal variations in R-S and (2) to develop a semi-empirical model describing R-S and including a heterotrophic component (R-H) and an autotrophic component (R-A). Plant above-ground activity was found to exert strong control over soil respiration since 71% of seasonal R-S variability was explained by the quantity of photosynthetically active radiation absorbed (APAR) by the grass canopy. We tested an additive model including a parameter enabling R-S partitioning into R-A and R-H. Assumptions underlying this model were that R-A mainly depended on the amount of photosynthates allocated below ground and that microbial and root activity was mostly controlled by soil temperature and soil moisture. The model provided a reasonably good prediction of seasonal variations in R-S (R-2 = 0.85) which varied between 5.4 mu mol m(-2) s(-1) in the wet season and 0.9 mu mol m(-2) s(-1) at the end of the dry season. The model was subsequently used to obtain annual estimates of R-S, R-A and R-H. In accordance with results reported for other tropical grasslands, we estimated that R-H accounted for 44% of R-S, which represented a flux similar to the amount of carbon brought annually to the soil from below-ground litter production. Overall, this study opens up prospects for simulating the carbon budget of tropical grasslands on a large scale using remotely sensed data. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to determine the impact of three levels of [CO2] and two levels of soil-nutrient availability on the growth and physiological responses of two tropical tree species differing in their ecological group: Croton urucurana Baillon, a pioneer (P), and also Cariniana legalis (Martius) Kuntze, a late succession (LS). We aimed to test the hypothesis that P species have stronger response to elevated [CO2] than LS species as a result of differences in photosynthetic capacity and growth kinetics between both functional groups. Seedlings of both species were grown in open-top-chambers under high (HN) or low (LN) soil-nutrient supply and exposed to ambient (380 mu mol mol(-1)) or elevated (570 and 760 mu mol mol(-1)) [CO2]. Measurements of gas exchange, chlorophyll a fluorescence, seedling biomass and allocation were made after 70 days of treatment. Results suggest that elevated [CO2] significantly enhances the photosynthetic rates (A) and biomass production in the seedlings of both species, but that soil-nutrient supply has the potential to modify the response of young tropical trees to elevated [CO2]. In relation to plants grown in ambient [CO2], the P species grown under 760 mu mol mol(-1) [CO2] showed increases of 28% and 91% in A when grown in LN and HN, respectively. In P species grown under 570 mu mol mol(-1) [CO2], A increased by 16% under HN, but there was no effect in LN. In LS species, the enhancement of A by effect of 760 mu mol mol(-1) [CO2] was 30% and 70% in LN and HN, respectively. The exposure to 570 mu mol mol(-1) [CO2] stimulated A by 31% in HN, but was no effect in LN. Reductions in stomatal conductance (g(s)) and transpiration (E), as a result of elevated [CO2] were observed. Increasing the nutrient supply from low to high increased both the maximum rate of carboxylation (V-cmax) and maximum potential rate of electron transport (J(max)). As the level of [CO2] increased, both the V-cmax and the J(max) were found to decrease, whereas the J(max)/V-cmax ratio increased. In the LS species, the maximum efficiency of PSII (F-v/F-m) was higher in the 760 mu mol mol(-1) [CO2] treatment relative to other [CO2] treatments. The results suggest that when grown under HN and the highest [CO2], the performance of the P species C. urucurana, in terms of photosynthesis and biomass enhancement, is better than the LS species C. legalis. However, a larger biomass is allocated to roots when C. legalis seedlings were exposed to elevated [CO2]. This response would be an important strategy for plant survival and productivity of the LS species under drought stresses conditions on tropical environments in a global-change scenario. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Plant diversity has been shown to influence the water cycle of forest ecosystems by differences in water consumption and the associated effects on groundwater recharge. However, the effects of biodiversity on soil water fluxes remain poorly understood for native tree species plantations in the tropics. Therefore, we estimated soil water fluxes and assessed the effects of tree species and diversity on these fluxes in an experimental native tree species plantation in Sardinilla (Panama). The study was conducted during the wet season 2008 on plots of monocultures and mixtures of three or six tree species. Rainfall and soil water content were measured and evapotranspiration was estimated with the Penman-Monteith equation. Soil water fluxes were estimated using a simple soil water budget model considering water input, output, and soil water and groundwater storage changes and in addition, were simulated using the physically based one-dimensional water flow model Hydrus-1D. In general, the Hydrus simulation did not reflect the observed pressure heads, in that modeled pressure heads were higher compared to measured ones. On the other hand, the results of the water balance equation (WBE) reproduced observed water use patterns well. In monocultures, the downward fluxes through the 200 cm-depth plane were highest below Hura crepitans (6.13 mm day−1) and lowest below Luehea seemannii (5.18 mm day−1). The average seepage rate in monocultures (±SE) was 5.66 ± 0.18 mm day−1, and therefore, significantly higher than below six-species mixtures (5.49 ± 0.04 mm day−1) according to overyielding analyses. The three-species mixtures had an average seepage rate of 5.63 ± 0.12 mm day−1 and their values did not differ significantly from the average values of the corresponding species in monocultures. Seepage rates were driven by the transpiration of the varying biomass among the plots (r = 0.61, p = 0.017). Thus, a mixture of trees with different growth rates resulted in moderate seepage rates compared to monocultures of either fast growing or slow growing tree species. Our results demonstrate that tree-species specific biomass production and tree diversity are important controls of seepage rates in the Sardinilla plantation during the wet season.
Resumo:
Fifty-nine rhizospheric soil samples from twenty different melon farms of Guatemala and Honduras were analysed to study the Fusarium species present in the soil and those developing on roots surfaces.
Resumo:
Microfilmed for preservation
Resumo:
A study was carried out on a previously eroded Oxic Paleustalf in Ibadan, southwestern Nigeria to determine the extent of soil degradation under mound tillage with some herbaceous legumes and residue management methods. A series of factorial experiments was carried out on 12 existing runoff plots. The study commenced in 1996 after a 5-year natural fallow. Mound tillage was introduced in 1997 till 1999. The legumes - Vigna unguiculata (cowpea), Mucuna pruriens and Pueraria phaseoloides - were intercropped with maize in 1996 and 1998 while yam was planted alone in 1997 and 1999. This paper covers 1997-1999. At the end of each year, residues were either burned or mulched on respective plots. Soil loss, runoff, variations in mound height, bulk density, soil water retention and sorptivity were measured. Cumulative runoff was similar among interactions of legume and residue management in 1997 (57-151 mm) and 1999 (206-397 mm). However, in 1998, cumulative runoff of 95 mm observed for Mucuna-burned residue was significantly greater than the 46 mm observed for cowpea-burned residue and the 39-51 mm observed for mulched residues of cowpea, Mucuna and Pueraria. Cumulative soil loss of 7.6 Mg ha(-1) observed for Mucuna-burned residue in 1997 was significantly greater than those for Pueraria-mulched (0.9 Mg ha(-1)) and Mucuna-mulched (1.4 Mg ha(-1)) residues whereas in 1999 it was similar to soil loss from cowpea treatments and Pueraria-burned residue (2.3-5.3 Mg ha(-1)). There were no significant differences in soil loss in 1998 (1-3.2 Mg ha(-1)) whereas Mucuna-burned residue had a greater soil loss (28.6 Mg ha(-1)) than mulched cowpea (6.9 Mg ha(-1)) and Pueraria (5.4 Ms ha(-1)). Mound heights (23 cm average) decreased non-linearly with cumulative rainfall. A cumulative rainfall of 500 mm removed 0.3-2.3 cm of soil from mounds in 1997, 3.5-6.9 cm in 1998 and 2.3-4.6 cm in 1999, indicating that (detached but less transported) soil from mounds was far higher than observed soil loss in each year. Soil water retention was improved at potentials ranging from -1 to -1500 kPa by Mucuna-mulched residue compared to the various burned-residue treatments. Also, mound sorptivity at -1 cm water head (14.3 cm h(-1/2)) was higher than furrow sorptivity (8.5 cm h(-1/2)), indicating differences in hydraulic characteristics between mound and furrow. Pueraria-mulched residues for mounds had the highest sorptivity of 17.24 cm h(-1/2), whereas the least value of 6.96 cm h(-1/2) was observed in furrow of Mucuna-burned residue. Pueraria phas eoloides was considered the best option for soil conservation on the previously eroded soil, cultivated with mound tillage. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Soils play a central role in the dynamics of biospheric carbon and in climate change. They contain the largest carbon stock of terrestrial ecosystems and return to the atmosphere a significant proportion of carbon fixed by photosynthesis. Soils of tropical forests are tremendously important in the carbon cycle because they receive the largest organic matter inputs, they have the largest respiration rates, and they are among the largest carbon reservoirs among world soils. This research assesses the main components of the soil carbon dynamics in primary (PF) and secondary (SF) tropical forests in Colombia. I evaluated the production, stocks, and decomposition rates of aboveground detritus as well as the stocks, growth, mortality, and decomposition of fine roots in these two forest types. Soil carbon outputs were evaluated as total soil, heterotrophic, and root respiration. The stocks of soil organic carbon down to 4 m deep in these two cover types and in degraded pastures (PAS) were also evaluated. ^ Soil inputs of organic carbon from above and belowground sources were lower in SF than in PF. Litterfall in SF was 58% and production of fine root detritus was 60% of that in PF. When production of woody detritus and palm fronds was considered, the difference between these forest types was even larger. However, outputs of mineral carbon through heterotrophic soil respiration were similar; in SF they equaled 97% of those in PF. As a result, soil carbon balance was positive in PF and negative in SF. Despite that soil carbon balances suggest that soils of SF are losing carbon, soil carbon stocks of SF were higher than of degraded pastures, suggesting that they have already started to recover soil carbon stocks lost under degraded pastures. This discrepancy can be partially explained by the effect of drier conditions on heterotrophic soil respiration as a consequence of a moderate El Niño event during the period of soil respiration measurements. The positive carbon balance in soils of PF despite the El Niño event, suggests that soils of PF accumulated about 664 Kg C ha−1 yr−1. Therefore, soil carbon dynamics mainly depended on successional status of vegetation and on climatic conditions. ^
Resumo:
Natural environmental gradients provide important information about the ecological constraints on plant and microbial community structure. In a tropical peatland of Panama, we investigated community structure (forest canopy and soil bacteria) and microbial community function (soil enzyme activities and respiration) along an ecosystem development gradient that coincided with a natural P gradient. Highly structured plant and bacterial communities that correlated with gradients in phosphorus status and soil organic matter content characterized the peatland. A secondary gradient in soil porewater NH4 described significant variance in soil microbial respiration and β-1-4-glucosidase activity. Covariation of canopy and soil bacteria taxa contributed to a better understanding of ecological classifications for biotic communities with applicability for tropical peatland ecosystems of Central America. Moreover, plants and soils, linked primarily through increasing P deficiency, influenced strong patterning of plant and bacterial community structure related to the development of this tropical peatland ecosystem.
Resumo:
Acknowledgements. This study was supported by the FP7-PEOPLE-2013-IEF Marie-Curie Action – SPATFOREST. Tree data from BCI were provided by the Center for Tropical Forest Science of the Smithsonian Tropical Research Institute and the primary granting agencies that have supported the BCI plot tree census. Data for the liana censuses were supported by the US National Science Foundation grants: DEB-0613666, DEB-0845071, and DEB-1019436 (to SAS). Soil data was funded by the National Science Foundation grants DEB021104, DEB021115, DEB0212284 and DEB0212818 supporting soils mapping in the BCI plot. We thank Helene Muller-Landau for providing some data on tree height for some BCI trees. We also thank all the people that contributed to obtain the data.
Resumo:
Soil acidity and low natural fertility are the main limiting factors for grain production in tropical regionssuch as the Brazilian Cerrado. The application of lime to the surface of no-till soil can improve plant nutrition, dry matter production, crop yields and revenue. The present study, conducted at the Lageado Experimental Farm in Botucatu, State of São Paulo, Brazil, is part of an ongoing research project initi-ated in 2002 to evaluate the long-term effects of the surface application of lime on the soil?s chemical attributes, nutrition and kernel/grain yield of peanut (Arachis hypogaea), white oat (Avena sativa L.) and maize (Zea mays L.) inter cropped with palisade grass (Urochloa brizantha cv. Marandu), as well as the forage dry matter yield of palisade grass in winter/spring, its crude protein concentration, estimated meat production, and revenue in a tropical region with a dry winter during four growing seasons. The experiment was designed in randomized blocks with four replications. The treatments consisted of four rates of lime application (0, 1000, 2000 and 4000 kg ha−1), performed in November 2004. The surface application of limestone to the studied tropical no-till soil was efficient in reducing soil acidity from the surface down to a depth of 0.60 m and resulted in greater availability of P and K at the soil surface. Ca and Mg availability in the soil also increased with the lime application rate, up to a depth of 0.60 m. Nutrient absorption was enhanced with liming, especially regarding the nutrient uptake of K, Ca and Mg by plants.Significant increases in the yield components and kernel/grain yields of peanut, white oat and maize were obtained through the surface application of limestone. The lime rates estimated to achieve the maximum grain yield, especially in white oat and maize, were very close to the rates necessary to increase the base saturation of a soil sample collected at a depth of 0?0.20 m to 70%, indicating that the surface liming of 2000 kg ha−1is effective for the studied tropical no-till soil. This lime rate also increases the forage dry matter yield, crude protein concentration and estimated meat production during winter/spring in the maize-palisade grass inter cropping, provides the highest total and mean net profit during the four growing seasons, and can improve the long-term sustainability of tropical agriculture in the Brazilian Cerrado.
Resumo:
This study aimed to investigate the impact of vegetation burning on the content and chemical composition of soil organic matter (SOM) along a profile of a sandy Acrisol in Southwestern Amazon, Brazil, within 3 years after experiment beginning(YAB).The study was performed in Rio Branco, Acre State, and the forest burning was performed under controlled conditions. Samples from 6 depth(0-100cm depth)were collected under burned forest (BF) and primary forest (PF) at 1 YAB and 3 YAB. Besides Cand N contents, humic substances and biomarkers were determined. Under PF, the C content decreased with depth from 12 to 2 g kg-1.C/N ratio ranged from 7.6 at the surface to values around 3 at 1 m depth, indicating a predominance of microbial products. Humin fraction was not detected in the whole profile. Burning of vegetation promoted an increase of C and of humic acids only at 0-5 cm. The n-alkane distribution showed a shift towards smaller chains in the 0-5 cm of BF, indicating main contribution of microbial products. Also PAH?s of high molecular weight were detected in this site. Vegetation burning imparts alterations on the SOM composition, but these tend to disappear within 3 years.
Resumo:
Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.