951 resultados para Triglycerides And Urinary Protein Excretion
Resumo:
We investigated the short-term and sustained hormonal and renal effects of angiotensin II (Ang II) receptor blockade in normotensive healthy volunteers. Twenty-four subjects maintained on a fixed sodium diet were randomized to receive for 8 days a placebo or 10 or 50 mg doses of the Ang II antagonist irbesartan (SR 47436, BMS 186295) according to a double-blind, parallel group design. Plasma renin activity, plasma immunoreactive Ang II and aldosterone levels, blood pressure, renal hemodynamics, and urinary electrolyte excretion were measured for 8 hours after the first and eighth administration of each dose of irbesartan or placebo. Ang II receptor blockade with irbesartan induced a dose-dependent compensatory increase in plasma renin activity and plasma angiotensin levels and a significant decrease in plasma aldosterone levels. The compensatory rise in plasma renin activity and Ang II levels was more pronounced on day 8, reflecting a long duration of the blocking effect of irbesartan. Irbesartan induced small changes in blood pressure and did not significantly modify renal blood flow and glomerular filtration rate. However, a significant decrease in filtration fraction was observed during receptor blockade on days 1 and 8. The tubular effects of irbesartan were characterized by a dose-dependent increase in sodium and chloride excretions. Interestingly, the cumulative natriuretic response to Ang II receptor blockade was similar on days 1 and 8, suggesting that in these subjects, renal Ang II receptors are not blocked over 24 hours during repeated administration even though this antagonist has a long duration of action (t1/2 of 15 to 17 hours).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
BACKGROUND: Obesity and African American ethnicity are established independent risk factors for the development of chronic kidney disease. No data exist about the association between obesity and renal hemodynamics in the African region. STUDY DESIGN: Cross-sectional study. SETTING & PARTICIPANTS: 301 nondiabetic participants (97 lean, 108 overweight, and 96 obese) of African descent with a positive family history of hypertension from the Seychelles islands. PREDICTOR: Body mass index (BMI). OUTCOMES: Glomerular hyperfiltration, glomerular filtration rate (GFR), effective renal plasma flow (ERPF), and filtration fraction. MEASUREMENTS: GFR and ERPF were measured using inulin and para-aminohippurate clearances, respectively. Participants' baseline demographics, laboratory data, and blood pressure were measured using standard techniques. RESULTS: The prevalence of glomerular hyperfiltration (defined as GFR >or=140 mL/min) increased across BMI categories (7.2%, 14.8%, and 27.1% for lean, overweight, and obese participants, respectively; P < 0.001). Higher BMI was associated with higher median GFR (99, 110, and 117 mL/min for lean, overweight, and obese participants, respectively; P < 0.001), ERPF (424, 462, and 477 mL/min, respectively; P = 0.01), and filtration fraction (0.23, 0.24, and 0.25; P < 0.001). Multivariate analyses adjusting for age, sex, blood pressure, fasting glucose level, and urinary sodium excretion and accounting for familial correlations confirmed the associations between high BMI (>25 kg/m(2)) and increased GFR, ERPF, and filtration fraction. No association between BMI categories and GFR was found with adjustment for body surface area. LIMITATIONS: Participants had a positive family history of hypertension. CONCLUSION: Overweight and obesity are associated with increased GFR, ERPF, and filtration fraction and a high prevalence of glomerular hyperfiltration in nondiabetic individuals of African descent. The absence of associations between BMI categories and GFR indexed for body surface area raises questions regarding the appropriateness of indexing GFR for body surface area in overweight populations.
Resumo:
Chemoreception is a biological process essential for the survival of animals, as it allows the recognition of important volatile cues for the detection of food, egg-laying substrates, mates or predators, among other purposes. Furthermore, its role in pheromone detection may contribute to evolutionary processes such as reproductive isolation and speciation. This key role in several vital biological processes makes chemoreception a particularly interesting system for studying the role of natural selection in molecular adaptation. Two major gene families are involved in the perireceptor events of the chemosensory system: the odorant-binding protein (OBP) and chemosensory protein (CSP) families. Here, we have conducted an exhaustive comparative genomic analysis of these gene families in twenty Arthropoda species. We show that the evolution of the OBP and CSP gene families is highly dynamic, with a high number of gains and losses of genes, pseudogenes and independent origins of subfamilies. Taken together, our data clearly support the birth-and-death model for the evolution of these gene families with an overall high gene-turnover rate. Moreover, we show that the genome organization of the two families is significantly more clustered than expected by chance and, more important, that this pattern appears to be actively maintained across the Drosophila phylogeny. Finally, we suggest the homologous nature of the OBP and CSP gene families, dating back their MRCA (most recent common ancestor) to 380¿420 Mya, and we propose a scenario for the origin and diversification of these families.
Resumo:
G-protein-signaling pathways convey extracellular signals inside the cells and regulate distinct physiological responses. This type of signaling pathways consists of three major components: G-protein-coupled receptors (GPCRs), heterotrimeric G proteins (G-proteins) and downstream effectors. Upon ligand binding, GPCRs activate heterotrimeric G proteins to initiate the signaling cascade. Dysfunction of GPCR signaling correlates with numerous diseases such as diabetes, nervous and immune system deficiency, and cancer. As the signaling switcher, G-proteins (Gs, Gq/11, G12/13, and Gi/o) have been an appealing topic of research for decades. A heterotrimeric G-protein is composed of three subunits, the guanine nucleotide associated a-subunit, ß and y subunits. In general, the duration of signaling is determined by the lifetime of activated (GTP bound) Ga subunits. Identification of novel communication partners of Ga subunits appears to be an attractive way to understand the machinery of GPCR signaling. In our lab, we mainly focus on Gao, which is abundantly expressed in the nervous system. Here we present two novel interacting partners of Drosophila Gao: Dhit and Kermit, identified through yeast two-hybrid screening and genetic screening respectively. Dhit is characterized by a small size with a conserved RGS domain and an N-terminal cysteine rich motif. The RGS domain possesses the GAP (GTPase activating protein) activity towards G proteins. However, we found that Dhit exerts not only the GAP activity but also the GDI (guanine nucleotide dissociation inhibitor) activity towards Gao. The unexpected GDI activity is preserved in GAIP/RGS19 - a mammalian homologue of Dhit. Further experiments confirmed the GDI activity of Dhit and GAIP/RGS19 in Drosophila and mammalian cell models. Therefore, we propose that Dhit and its mammalian homologues modulate GPCR signaling by a double suppression of Ga subunits - suppression of their nucleotide exchange with GTP and acceleration of their hydrolysis of GTP. Kermit/GEPC was first identified as a binding partner of GAIP/RGS19 in a yeast two- hybrid screen. Instead of interacting with the Drosophila homologue of GAIP/RGS19 (Dhit), Kermit binds to Gao in vivo and in vitro. The functional consequence of Kermit/Gao interaction is the regulation of localization of Vang (one of the planar cell polarity core components) at the apical membrane. Overall, my work elaborated the action of Gao with its two interaction partners in Gao- mediated signaling pathway. Conceivably, the understanding of GPCR signaling including Gao and its regulators or effectors will ultimately shed light on future pharmaceutical research. - Les voies de signalisation médiées par les protéines G transmettent des signaux extracellulaires à l'intérieur des cellules pour réguler des réponses physiologiques distinctes. Cette voie de signalisation consiste en trois composants majeurs : les récepteurs couplés aux protéines G (GPCRs), les protéines G hétérotrimériques (G-proteins) et les effecteurs en aval. Suite à la liaison du ligand, les GPCRs activent les protéines G hétérotrimériques qui initient la cascade de signalisation. Des dysfonctions dans la signalisation médiée par les GPCRs sont corrélées avec de nombreuses maladies comme le diabète, des déficiences immunes et nerveuses, ainsi que le cancer. Puisque la voie de signalisation s'active et se désactive, les protéines G (Gs, Gq/11, G12/13 et Gi/o) ont été un sujet de recherche attrayant pendant des décennies. Une protéine G hétérotrimérique est composée de trois sous-unités, la sous-unité a associée au nucléotide guanine, ainsi que les sous-unités ß et y. En général, la durée du signal est déterminée par le temps de demi-vie des sous-unités Ga activées (Ga liées au GTP). Identifier de nouveaux partenaires de communication des sous-unités Ga se révèle être un moyen attractif de comprendre la machinerie de la signalisation par les GPCRs. Dans notre laboratoire nous nous sommes concentrés principalement sur Gao qui est exprimée de manière abondante dans le système nerveux. Nous présentons ici deux nouveaux partenaires qui interagissent avec Gao chez la drosophile: Dhit et Kermit, qui ont été identifiés respectivement par la méthode du yeast two-hybrid et par criblage génétique. Dhit est caractérisé par une petite taille, avec un domaine RGS conservé et un motif N- terminal riche en cystéines. Le domaine RGS contient une activité GAP (GTPase activating protein) pour les protéines G. Toutefois, nous avons découvert que Dhit exerce non seulement une activité GAP mais aussi une activité GDI (guanine nucleotide dissociation inhibitor) à l'égard de Gao. Cette activité GDI inattendue est préservée dans RGS19 - un homologue de Dhit chez les mammifères. Des expériences supplémentaires ont confirmé l'activité GDI de Dhit et de RGS19 chez Drosophila melanogaster et les modèles cellulaires mammifères. Par conséquent, nous proposons que Dhit et ses homologues mammifères modulent la signalisation GPCR par une double suppression des sous-unités Ga - suppression de leur nucléotide d'échange avec le GTP et une accélération dans leur hydrolyse du GTP. Kermit/GIPC a été premièrement identifié comme un partenaire de liaison de RGS19 dans le criblage par yeast two-hybrid. Au lieu d'interagir avec l'homologue chez la drosophile de RGS19 (Dhit), Kermit se lie à Gao in vivo et in vitro. La conséquence fonctionnelle de l'interaction Kermit/Gao est la régulation de la localisation de Vang, un des composants essentiel de la polarité planaire cellulaire, à la membrane apicale. Globalement, mon travail a démontré l'action de Gao avec ses deux partenaires d'interaction dans la voie de signalisation médiée par Gao. La compréhension de la signalisation par les GPCRs incluant Gao et ses régulateurs ou effecteurs aboutira à mettre en lumière de futurs axes dans la recherche pharmacologique.
Resumo:
Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids.We analyzed whether reduced urea excretion was a consequence of higherNO ; (nitrite,nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion.There were no differences in plasma nitrate or nitrite. NO and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithinewhen comparedwith controls,whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.
Resumo:
The objective of this work was to assess the productivity and polysaccharide-protein complex content of Agaricus blazei on rice straw medium, in comparison to conventional sawdust, using four casing soils. The A. blazei strain used was BCRC36814T, purchased from the Food Industry Research and Development Institute, Hsin-Chu, Taiwan. The two media were evaluated as to A. blazei productivity, harvesting time, and production costs. The experimental design used was a randomized complete block, with four replicates. Three local casing soils - Typic Paleudult (CCe), Typic Udorthent (Tq) and Oxyaquic Paleudult (TSp) - were compared to imported peat soil (PS, Saprists, Histosols), used as the control. The productivity of A. blazei using Tq and TSp soil was significantly higher. The TSp casing treatment resulted in earlier harvest by at least 14 to 27 days, when compared to the other treatments. The polysaccharide content in CCe (13.2%) and Tq soils (13.2%) did not differ significantly from the PS (13.4%) and TSp (10.6%) treatments. Local casing soils decreased the production costs of A. blazei cultivation. Composted rice straw can substitute sawdust as the culture medium for A. blazei production with increased yield.
Resumo:
An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.
Resumo:
Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids.We analyzed whether reduced urea excretion was a consequence of higherNO ; (nitrite,nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion.There were no differences in plasma nitrate or nitrite. NO and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithinewhen comparedwith controls,whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.
Resumo:
An isolate of Grapevine virus B (GVB), obtained by indexing Vitis labrusca and V. vinifera grapevines on the indicator LN33, was transmitted mechanically to several Nicotiana species. The virus was partially purified from N. cavicola and the coat protein estimated at 23 kDa by SDS-PAGE. In negatively stained leaf extracts of experimentally inoculated N. cavicola and N. occidentalis, flexuous particles with cross banding were observed, predominantly measuring 750-770 x 12 nm, with a modal length of 760 nm. Decoration indicated a clear, positive reaction against AS-GVB. In DAS-ELISA, GVB was detected in N. cavicola and grapevine extracts, and Western blots showed homologous and cross reaction of GVB and GVA antisera with GVB coat protein. Using specific primers for GVB, a fragment of 594 bp, comprising the coat protein gene coding for 197 amino acids, was amplified by RT-PCR with viral RNA extracted from GVB-infected N. occidentalis. The nucleotide and the deduced amino acid sequences of the coat protein gene showed high identities with Italian and Japanese isolates of GVB.
Resumo:
OBJECTIVE: To evaluate the relationship between peripheral arterial disease and elevated levels of C-reactive protein in the Japanese-Brazilian population of high cardiovascular risk.METHODS: We conducted a cross-sectional study derived from a population-based study on the prevalence of diabetes and associated diseases in the Japanese-Brazilian population. One thousand, three hundred and thirty individuals aged e" 30 underwent clinical and laboratory examination, including measurement of ultrasensitive C-reactive protein. The diagnosis of peripheral arterial disease was performed by calculating the ankle-brachial index. We considered with peripheral arterial disease patients who had ankle-brachial index d" 0.9. After applying the exclusion criteria, 1,038 subjects completed the study.RESULTS: The mean age of the population was 56.8 years; 46% were male. The prevalence of peripheral arterial disease was 21%, with no difference between genders. Data analysis showed no association between peripheral arterial disease and ultrasensitive C-reactive protein. Patients with ankle-brachial index d" 0.70 showed higher values of ultrasensitive C-reactive protein and worse cardiometabolic profile. We found a positive independent association of peripheral arterial disease with hypertension and smoking.CONCLUSION: The association between low levels of ankle-brachial index and elevated levels of ultrasensitive C-reactive protein may suggest a relationship of gravity, aiding in the mapping of high-risk patients.
Resumo:
The importance of studies with hematological, serum biochemistry and urinary values of Crab-eating Fox (Cerdocyon thous) is based on the need for health care and maintenance of those populations. This paper has the objective to investigate hematological, serum biochemistry and urinary physiological parameters of the Crab-eating fox, comparing gender and age differences. Blood samples were collected in 2003 from 52 animals of different Zoos in São Paulo state, Brazil; 7mL of blood was used to obtain a complete blood cell count (CBC) and the profile of the serum biochemistry. Moreover, 5mL of urine were collected for analysis. There was no difference in values for male and female animals, as for the CBC and serum biochemistry. Some hematological and serum biochemical parameters were influenced by age, showing significant differences. Urinalysis results were just demonstrated in a descriptive form. The studied values were, RBC 4.35±0.73 x 10(6) /µL, WBC 7.72±3.66 x 10³ /µL (predominance of segmented neutrophils), platelets 227.06±111.58 x 10³ /µL, urea 43.06±14.28mg/dL and creatinine 1.03±0.24mg/dL. Hematological, serum biochemistry and urinary values obtained in this study can be used as physiological values of the captive Crab-eating Fox. It is possible to conclude that wild species need their own reference values, differentiating animals in captivity from free-ranging animals.
Resumo:
Symptomatic involvement of the gastrointestinal (GI) tract as a prominent symptom in Langerhans' cell histiocytosis (LCH) is uncommon, occurring in less than 1 to 5% of all cases, even when the disease is in its disseminated form. Up to now, there have been reports of 18 cases of LCH with GI manifestations, including our 2 cases, with diarrhea (77.7%), protein-losing enteropathy (33.3%) and bloody stool being the most frequent findings. The authors present two patients with severe diarrhea and refractory hypoalbuminemia, and with the protein-losing enteropathy documented by Cr51-labeled albumin studies. A review of the literature indicated that the presence of GI symptoms is often associated with systemic disease as well as with poor prognosis, mainly under 2 years of age. Radioisotopes are useful for documenting protein loss in several diseases with high specificity and sensitivity, and their utilization in the cases reviewed here permitted diagnoses in 6 children, as well as improved therapeutic management.
Resumo:
Cyanide-resistant alternative oxidase (AOX) is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP) is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX) and the proton electrochemical gradient energy-dissipating pathway (UCP) lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation). Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.