902 resultados para Triangular finite element
Resumo:
The deep transverse metatarsal ligaments (DTML) play an important role in stabilizing the metatarsal bones and manipulating foot transverse arch deformation. However, the biomechanical research about DTML in the foot maneuver is quite few. Due to the difficulties and lack of better measurement technology for these ligaments experimental monitor, the load transfer mechanism and internal stress state also hadn't been well addressed. The purpose of this study was to develop a detailing foot finite element model including DTML tissues, to investigate the mechanical response of DTML during the landing condition. The DTML was considered as hyperelastic material model was used to represent the nonlinear and nearly incompressible nature of the ligament tissue. From the simulation results, it is clearly to find that the peak maiximal principal stress of DTML was between the third and fourth metatarsals. Meanwhile, it seems the DTML in the middle position experienced higher tension than the sides DTML.
Resumo:
Background: Biomechanical stress analysis has been used for plaque vulnerability assessment. The presence of plaque hemorrhage (PH) is a feature of plaque vulnerability and is associated with thromboembolic ischemic events. The purpose of the present study was to use finite element analysis (FEA) to compare the stress profiles of hemorrhagic and non-hemorrhagic profiles. Methods and Results: Forty-five consecutive patients who had suffered a cerebrovascular ischemic event with an underlying carotid artery disease underwent high-resolution magnetic resonance imaging (MRI) of their symptomatic carotid artery in a 1.5-T MRI system. Axial images were manually segmented for various plaque components and used for FEA. Maximum critical stress (M-CstressSL) for each slice was determined. Within a plaque, the maximum M-CstressSL for each slice of a plaque was selected to represent the maximum critical stress of that plaque (M-CstressPL) and used to compare hemorrhagic and non-hemorrhagic plaques. A total of 62% of plaques had hemorrhage. It was observed that plaques with hemorrhage had significantly higher stress (M-CstressPL) than plaques without PH (median [interquartile range]: 315 kPa [247-434] vs. 200 kPa [171-282], P=0.003). Conclusions: Hemorrhagic plaques have higher biomechanical stresses than non-hemorrhagic plaques. MRI-based FEA seems to have the potential to assess plaque vulnerability.
Resumo:
High mechanical stress in atherosclerotic plaques at vulnerable sites, called critical stress, contributes to plaque rupture. The site of minimum fibrous cap (FC) thickness (FCMIN) and plaque shoulder are well-documented vulnerable sites. The inherent weakness of the FC material at the thinnest point increases the stress, making it vulnerable, and it is the big curvature of the lumen contour over FC which may result in increased plaque stress. We aimed to assess critical stresses at FCMIN and the maximum lumen curvature over FC (LCMAX) and quantify the difference to see which vulnerable site had the highest critical stress and was, therefore, at highest risk of rupture. One hundred patients underwent high resolution carotid magnetic resonance (MR) imaging. We used 352 MR slices with delineated atherosclerotic components for the simulation study. Stresses at all the integral nodes along the lumen surface were calculated using the finite-element method. FCMIN and LCMAX were identified, and critical stresses at these sites were assessed and compared. Critical stress at FC MIN was significantly lower than that at LCMAX (median: 121.55 kPa; inter quartile range (IQR) = [60.70-180.32] kPa vs. 150.80 kPa; IQR = [91.39-235.75] kPa, p < 0.0001). If critical stress at FCMIN was only used, then the stress condition of 238 of 352 MR slices would be underestimated, while if the critical stress at LCMAX only was used, then 112 out of 352 would be underestimated. Stress analysis at FCMIN and LCMAX should be used for a refined mechanical risk assessment of atherosclerotic plaques, since material failure at either site may result in rupture.
Resumo:
Background: High-resolution magnetic resonance (MR) imaging has been used for MR imaging-based structural stress analysis of atherosclerotic plaques. The biomechanical stress profile of stable plaques has been observed to differ from that of unstable plaques; however, the role that structural stresses play in determining plaque vulnerability remains speculative. Methods: A total of 61 patients with previous history of symptomatic carotid artery disease underwent carotid plaque MR imaging. Plaque components of the index artery such as fibrous tissue, lipid content and plaque haemorrhage (PH) were delineated and used for finite element analysis-based maximum structural stress (M-C Stress) quantification. These patients were followed up for 2 years. The clinical end point was occurrence of an ischaemic cerebrovascular event. The association of the time to the clinical end point with plaque morphology and M-C Stress was analysed. Results: During a median follow-up duration of 514 days, 20% of patients (n=12) experienced an ischaemic event in the territory of the index carotid artery. Cox regression analysis indicated that M-C Stress (hazard ratio (HR): 12.98 (95% confidence interval (CI): 1.32-26.67, pZ0.02), fibrous cap (FC) disruption (HR: 7.39 (95% CI: 1.61e33.82), p Z 0.009) and PH (HR: 5.85 (95% CI: 1.27e26.77), p Z 0.02) are associated with the development of subsequent cerebrovascular events. Plaques associated with future events had higher M-C Stress than those which had remained asymptomatic (median (interquartile range, IQR): 330 kPa (229e494) vs. 254 kPa (166-290), p Z0.04). Conclusions: High biomechanical structural stresses, in addition to FC rupture and PH, are associated with subsequent cerebrovascular events.
Resumo:
Objectives: There is considerable evidence that patients with carotid artery stenosis treated immediately after the ischaemic cerebrovascular event have a better clinical outcome than those who have delayed treatment. Biomechanical assessment of carotid plaques using high-resolution MRI can help examine the relationship between the timing of carotid plaque symptomology and maximum simulated plaque stress concentration. Methods: Fifty patients underwent high-resolution multisequence in vivo MRI of their carotid arteries. Patients with acute symptoms (n=25) underwent MRI within 72 h of the onset of ischaemic cerebrovascular symptoms, whereas recently symptomatic patients (n=25) underwent MRI from 2 to 6 weeks after the onset of symptoms. Stress analysis was performed based on the geometry derived from in vivo MRI of the symptomatic carotid artery at the point of maximum stenosis. The peak stresses within the plaques of the two groups were compared. Results: Patient demographics were comparable for both groups. All the patients in the recently symptomatic group had severe carotid stenosis in contrast to patients with acute symptoms who had predominantly mild to moderate carotid stenosis. The simulated maximum stresses in patients with acute symptoms was significantly higher than in recently symptomatic patients (median (IQR): 313310 4 dynes/cm 2 (295 to 382) vs 2523104 dynes/cm 2 (236 to 311), p=0.02). Conclusions: Patients have extremely unstable, high-risk plaques, with high stresses, immediately after an acute cerebrovascular event, even at lower degrees of carotid stenoses. Biomechanical stress analysis may help us refine our risk-stratification criteria for the management of patients with carotid artery disease in future.
Resumo:
The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.
Resumo:
Objective: The aim of this study was to explore whether there is a relationship between the degree of MR-defined inflammation using ultra small super-paramagnetic iron oxide (USPIO) particles, and biomechanical stress using finite element analysis (FEA) techniques, in carotid atheromatous plaques. Methods and Results: 18 patients with angiographically proven carotid stenoses underwent multi-sequence MR imaging before and 36 h after USPIO infusion. T2 * weighted images were manually segmented into quadrants and the signal change in each quadrant normalised to adjacent muscle was calculated after USPIO administration. Plaque geometry was obtained from the rest of the multi-sequence dataset and used within a FEA model to predict maximal stress concentration within each slice. Subsequently, a new statistical model was developed to explicitly investigate the form of the relationship between biomechanical stress and signal change. The Spearman's rank correlation coefficient for USPIO enhanced signal change and maximal biomechanical stress was -0.60 (p = 0.009). Conclusions: There is an association between biomechanical stress and USPIO enhanced MR-defined inflammation within carotid atheroma, both known risk factors for plaque vulnerability. This underlines the complex interaction between physiological processes and biomechanical mechanisms in the development of carotid atheroma. However, this is preliminary data that will need validation in a larger cohort of patients.
Resumo:
Object. Individuals with carotid atherosclerosis develop symptoms following rupture of vulnerable plaques. Biomechanical stresses within this plaque may increase vulnerability to rupture. In this report the authors describe the use of in vivo carotid plaque imaging and computational mechanics to document the magnitude and distribution of intrinsic plaque stresses. Methods. Ten (five symptomatic and five asymptomatic) individuals underwent plaque characterization magnetic resonance (MR) imaging. Plaque geometry and composition were determined by multisequence review. Intrinsic plaque stress profiles were generated from 3D meshes by using finite element computational analysis. Differences in principal (shear) stress between normal and diseased sections of the carotid artery and between symptomatic and asymptomatic plaques were noted. Results. There was a significant difference in peak principal stress between diseased and nondiseased segments of the artery (mean difference 537.65 kPa, p < 0.05). Symptomatic plaques had higher mean stresses than asymptomatic plaques (627.6 kPa compared with 370.2 kPa, p = 0.05), which were independent of luminal stenosis and plaque composition. Conclusions. Significant differences in plaque stress exist between plaques from symptomatic individuals and those from asymptomatic individuals. The MR imaging-based computational analysis may therefore be a useful aid to identification of vulnerable plaques in vivo.
Resumo:
A finite element analysis of laminated shells of revolution reinforced with laminated stifieners is described here-in. A doubly curved quadrilateral laminated anisotropic shell of revolution finite element of 48 d.o.f. is used in conjunction with two stiffener elements of 16 d.o.f. namely: (i) A laminated anisotropic parallel circle stiffener element (PCSE); (ii) A laminated anisotropic meridional stiffener element (MSE). These stifiener elements are formulated under line member assumptions as degenerate cases of the quadrilateral shell element to achieve compatibility all along the shell-stifiener junction lines. The solutions to the problem of a stiffened cantilever cylindrical shell are used to check the correctness of the present program while it's capability is shown through the prediction of the behavior of an eccentrically stiffened laminated hyperboloidal shell.
Resumo:
The finite element method (FEM) is used to determine for pitch-point, mid-point and tip loading, the deflection curve of a Image 1 diamentral pitch (DP) standard spur gear tooth corresponding to number of teeth of 14, 21, 26 and 34. In all these cases the deflection of the gear tooth at the point of loading obtained by FEM is in good agreement with the experimental value. The contraflexure in the deflection curve at the point of loading observed experimentally in the cases of pitch-point and mid-point loading, is predicted correctly by the FEM analysis.
Resumo:
Non-linear natural vibration characteristics and the dynamic response of hingeless and fully articulated rotors of rectangular cross-section are studied by using the finite element method. In the formulation of response problems, the global variables are augmented with appropriate additional variables, facilitating direct determination of sub-harmonic response. Numerical results are given showing the effect of the geometric non-linearity on the first three natural frequencies. Response analysis of typical rotors indicates a possibility of substantial sub-harmonic response especially in the fully articulated rotors widely adopted in helicopters.
Resumo:
Anatomically precontoured plates are commonly used to treat periarticular fractures. A well-fitting plate can be used as a tool for anatomical reduction of the fractured bone. Recent studies highlighted that some plates fit poorly for many patients due to considerable shape variations between bones of the same anatomical site. While it is impossible to design one shape that fits all, it is also burdensome for the manufacturers and hospitals to produce, store and manage multiple plate shapes without the certainty of utilization by a patient population. In this study, we investigated the number of shapes required for maximum fit within a given dataset, and if they could be obtained by manually deforming the original plate. A distal medial tibial plate was automatically positioned on 45 individual tibiae, and the optimal deformation was determined iteratively using finite element analysis simulation. Within the studied dataset, we found that: (i) 89% fit could be achieved with four shapes, (ii) 100% fit was impossible through mechanical deformation, and (iii) the deformations required to obtain the four plate shapes were safe for the stainless steel plate for further clinical use. The proposed framework is easily transferable to other orthopaedic plates.
Resumo:
A finite element analysis of thin-walled open-section laminated anisotropic beams is presented herein. A two-noded, 8 degrees of freedom per node thin-walled open-section laminated anisotropic beam finite element has been developed and used. The displacements of the element reference axes are expressed in terms of one-dimensional first order Hermite interpolation polynomials and line member assumptions are invoked in the formulation of the stiffness matrix. The problems of: 1. (a) an isotropic material Z section straight cantilever beam, and 2. (b) a single-layer (0°) composite Z section straight cantilever beam, for which continuum solutions (exact/approximate) are possible, have been solved in order to evaluate the performance of the finite element. Its applicability has been shown by solving the following problems: 3. (c) a two-layer (45°/−45°) composite Z section straight cantilever beam, 4. (d) a three-layer (0°/45°/0°) composite Z section straight cantilever beam.
Resumo:
The details of development of the stiffness matrix of a laminated anisotropic curved beam finite element are reported. It is a 16 dof element which makes use of 1-D first order Hermite interpolation polynomials for expressing it's assumed displacement state. The performance of the element is evaluated considering various examples for which analytical or other solutions are available.