972 resultados para Tree Crown Segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital collections are growing exponentially in size as the information age takes a firm grip on all aspects of society. As a result Information Retrieval (IR) has become an increasingly important area of research. It promises to provide new and more effective ways for users to find information relevant to their search intentions. Document clustering is one of the many tools in the IR toolbox and is far from being perfected. It groups documents that share common features. This grouping allows a user to quickly identify relevant information. If these groups are misleading then valuable information can accidentally be ignored. There- fore, the study and analysis of the quality of document clustering is important. With more and more digital information available, the performance of these algorithms is also of interest. An algorithm with a time complexity of O(n2) can quickly become impractical when clustering a corpus containing millions of documents. Therefore, the investigation of algorithms and data structures to perform clustering in an efficient manner is vital to its success as an IR tool. Document classification is another tool frequently used in the IR field. It predicts categories of new documents based on an existing database of (doc- ument, category) pairs. Support Vector Machines (SVM) have been found to be effective when classifying text documents. As the algorithms for classifica- tion are both efficient and of high quality, the largest gains can be made from improvements to representation. Document representations are vital for both clustering and classification. Representations exploit the content and structure of documents. Dimensionality reduction can improve the effectiveness of existing representations in terms of quality and run-time performance. Research into these areas is another way to improve the efficiency and quality of clustering and classification results. Evaluating document clustering is a difficult task. Intrinsic measures of quality such as distortion only indicate how well an algorithm minimised a sim- ilarity function in a particular vector space. Intrinsic comparisons are inherently limited by the given representation and are not comparable between different representations. Extrinsic measures of quality compare a clustering solution to a “ground truth” solution. This allows comparison between different approaches. As the “ground truth” is created by humans it can suffer from the fact that not every human interprets a topic in the same manner. Whether a document belongs to a particular topic or not can be subjective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focuses on a study which introduced an iterative modeling method that combines properties of ordinary least squares (OLS) with hierarchical tree-based regression (HTBR) in transportation engineering. Information on OLS and HTBR; Comparison and contrasts of OLS and HTBR; Conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High reliability of railway power systems is one of the essential criteria to ensure quality and cost-effectiveness of railway services. Evaluation of reliability at system level is essential for not only scheduling maintenance activities, but also identifying reliability-critical components. Various methods to compute reliability on individual components or regularly structured systems have been developed and proven to be effective. However, they are not adequate for evaluating complicated systems with numerous interconnected components, such as railway power systems, and locating the reliability critical components. Fault tree analysis (FTA) integrates the reliability of individual components into the overall system reliability through quantitative evaluation and identifies the critical components by minimum cut sets and sensitivity analysis. The paper presents the reliability evaluation of railway power systems by FTA and investigates the impact of maintenance activities on overall reliability. The applicability of the proposed methods is illustrated by case studies in AC railways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fault tree analysis (FTA) is presented to model the reliability of a railway traction power system in this paper. First, the construction of fault tree is introduced to integrate components in traction power systems into a fault tree; then the binary decision diagram (BDD) method is used to evaluate fault trees qualitatively and quantitatively. The components contributing to the reliability of overall system are identified with their relative importance through sensitivity analysis. Finally, an AC traction power system is evaluated by the proposed methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within a surveillance video, occlusions are commonplace, and accurately resolving these occlusions is key when seeking to accurately track objects. The challenge of accurately segmenting objects is further complicated by the fact that within many real-world surveillance environments, the objects appear very similar. For example, footage of pedestrians in a city environment will consist of many people wearing dark suits. In this paper, we propose a novel technique to segment groups and resolve occlusions using optical flow discontinuities. We demonstrate that the ratio of continuous to discontinuous pixels within a region can be used to locate the overlapping edges, and incorporate this into an object tracking framework. Results on a portion of the ETISEO database show that the proposed algorithm results in improved tracking performance overall, and improved tracking within occlusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Security of tenure is the cornerstone of the land management system in Australia. Freehold title is protected throug indefeasibility of title entrenched in legislation and protection of registrable interests in land is offered through the Statutory Assurance Fund. For those with interests pertaining to Crown Land no such protection is offered, although this position is not uniform across Australia. Notably those with Crown leasehold interests or a profit a prendre on Crown Land in Queensland are not protected through registration on the freehold land register and do not have the benefit of indefeasibility of title. The issue of management of interests pertaining to Crown Land has become increasingly relevant due to the complexities associated with balancing public interests including native title with more commercial interests in land generated through carbon sequestration, forestry and mining. This paper considers the framework for the management of Crown Land in Queensland and the adequacy of this framework for commercial interests that pertain to Crown Land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segmentation of novel or dynamic objects in a scene, often referred to as background sub- traction or foreground segmentation, is critical for robust high level computer vision applica- tions such as object tracking, object classifca- tion and recognition. However, automatic real- time segmentation for robotics still poses chal- lenges including global illumination changes, shadows, inter-re ections, colour similarity of foreground to background, and cluttered back- grounds. This paper introduces depth cues provided by structure from motion (SFM) for interactive segmentation to alleviate some of these challenges. In this paper, two prevailing interactive segmentation algorithms are com- pared; Lazysnapping [Li et al., 2004] and Grab- cut [Rother et al., 2004], both based on graph- cut optimisation [Boykov and Jolly, 2001]. The algorithms are extended to include depth cues rather than colour only as in the original pa- pers. Results show interactive segmentation based on colour and depth cues enhances the performance of segmentation with a lower er- ror with respect to ground truth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a real-time foreground–background segmentation algorithm that exploits the following observation (very often satisfied by a static camera positioned high in its environment). If a blob moves on a pixel p that had not changed its colour significantly for a few frames, then p was probably part of the background when its colour was static. With this information we are able to update differentially pixels believed to be background. This work is relevant to autonomous minirobots, as they often navigate in buildings where smart surveillance cameras could communicate wirelessly with them. A by-product of the proposed system is a mask of the image regions which are demonstrably background. Statistically significant tests show that the proposed method has a better precision and recall rates than the state of the art foreground/background segmentation algorithm of the OpenCV computer vision library.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes the use of the Bayes Factor as a distance metric for speaker segmentation within a speaker diarization system. The proposed approach uses a pair of constant sized, sliding windows to compute the value of the Bayes Factor between the adjacent windows over the entire audio. Results obtained on the 2002 Rich Transcription Evaluation dataset show an improved segmentation performance compared to previous approaches reported in literature using the Generalized Likelihood Ratio. When applied in a speaker diarization system, this approach results in a 5.1% relative improvement in the overall Diarization Error Rate compared to the baseline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copyright protects much of the creative, cultural, educational, scientific and informational material generated by federal, State/Territory and local governments and their constituent departments and agencies. Governments at all levels develop, manage and distribute a vast array of materials in the form of documents, reports, websites, datasets and databases on CD or DVD and files that can be downloaded from a website. Under the Copyright Act 1968 (Cth), with few exceptions government copyright is treated the same as copyright owned by non-government parties insofar as the range of protected materials and the exclusive proprietary rights attaching to them are concerned. However, the rationale for recognizing copyright in public sector materials and vesting ownership of copyright in governments is fundamentally different to the main rationales underpinning copyright generally. The central justification for recognizing Crown copyright is to ensure that government documents and materials created for public administrative purposes are disseminated in an accurate and reliable form. Consequently, the exclusive rights held by governments as copyright owners must be exercised in a manner consistent with the rationale for conferring copyright ownership on them. Since Crown copyright exists primarily to ensure that documents and materials produced for use in the conduct of government are circulated in an accurate and reliable form, governments should exercise their exclusive rights to ensure that their copyright materials are made available for access and reuse, in accordance with any laws and policies relating to access to public sector materials. While copyright law vests copyright owners with extensive bundles of exclusive rights which can be exercised to prevent others making use of the copyright material, in the case of Crown copyright materials these rights should rarely be asserted by government to deviate from the general rule that Crown copyright materials will be available for “full and free reproduction” by the community at large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the analysis of medical images for computer-aided diagnosis and therapy, segmentation is often required as a preliminary step. Medical image segmentation is a complex and challenging task due to the complex nature of the images. The brain has a particularly complicated structure and its precise segmentation is very important for detecting tumors, edema, and necrotic tissues in order to prescribe appropriate therapy. Magnetic Resonance Imaging is an important diagnostic imaging technique utilized for early detection of abnormal changes in tissues and organs. It possesses good contrast resolution for different tissues and is, thus, preferred over Computerized Tomography for brain study. Therefore, the majority of research in medical image segmentation concerns MR images. As the core juncture of this research a set of MR images have been segmented using standard image segmentation techniques to isolate a brain tumor from the other regions of the brain. Subsequently the resultant images from the different segmentation techniques were compared with each other and analyzed by professional radiologists to find the segmentation technique which is the most accurate. Experimental results show that the Otsu’s thresholding method is the most suitable image segmentation method to segment a brain tumor from a Magnetic Resonance Image.