918 resultados para Transporter protein genes


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In cattle, at least 39 variants of the 4 casein proteins (α(S1)-, β-, α(S2)- and κ-casein) have been described to date. Many of these variants are known to affect milk-production traits, cheese-processing properties, and the nutritive value of milk. They also provide valuable information for phylogenetic studies. So far, the majority of studies exploring the genetic variability of bovine caseins considered European taurine cattle breeds and were carried out at the protein level by electrophoretic techniques. This only allows the identification of variants that, due to amino acid exchanges, differ in their electric charge, molecular weight, or isoelectric point. In this study, the open reading frames of the casein genes CSN1S1, CSN2, CSN1S2, and CSN3 of 356 animals belonging to 14 taurine and 3 indicine cattle breeds were sequenced. With this approach, we identified 23 alleles, including 5 new DNA sequence variants, with a predicted effect on the protein sequence. The new variants were only found in indicine breeds and in one local Iranian breed, which has been phenotypically classified as a taurine breed. A multidimensional scaling approach based on available SNP chip data, however, revealed an admixture of taurine and indicine populations in this breed as well as in the local Iranian breed Golpayegani. Specific indicine casein alleles were also identified in a few European taurine breeds, indicating the introgression of indicine breeds into these populations. This study shows the existence of substantial undiscovered genetic variability of bovine casein loci, especially in indicine cattle breeds. The identification of new variants is a valuable tool for phylogenetic studies and investigations into the evolution of the milk protein genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The expression of the chicken fast skeletal myosin alkali light chain (MLC) 3f is subject to complex patterns of control by developmental and physiologic signals. Regulation over MLC3f gene expression is thought to be exerted primarily at the transcriptional level. The purpose of this dissertation was to identify cis-acting elements on the 5$\sp\prime$ flanking region of chicken MLC3f gene that are important for transcriptional regulation. The results show that the 5$\sp\prime$ flanking region of MLC3f gene contains multiple cis-acting elements. The nucleotide sequence of these elements demonstrates a high degree of conservation between different species and are also found in the 5$\sp\prime$ flanking regions of many muscle protein genes. The first regulatory region is located between $-$185 and $-$150 bp from the transcription start site and contains an AT-rich element. Linker scanner analyses have revealed that this element has a positive effect on transcription of the MLC3f promoter. Furthermore, when linked to a heterologous viral promoter, it can enhance reporter gene expression in a muscle-specific manner, independent of distance or orientation.^ The second regulatory region is located between $-$96 and $-$64 from the transcription start site. Sequences downstream of $-$96 have the capacity to drive muscle-specific reporter gene expression, although the region between $-$96 and $-$64 has no intrinsic enhancer-like activity. Linker scanner analyses have identified a GC-rich motif that required efficient transcription of the MLC3f promoter. Mutations to this region of DNA results in diminished capacity to drive reporter gene expression and is correlated with disruption of the ability to bind sequence-specific transcription factors. These sequence-specific DNA-binding proteins were detected in both muscle and non-muscle extracts. The results suggest that the mere presence or absence of transcription factors cannot be solely responsible for regulation of MLC3f expression and that tissue-specific expression may arise from complex interactions with muscle-specific, as well as more ubiquitous transcription factors with multiple regulatory elements on the gene. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder with impaired β-oxidation of very long chain fatty acids (VLCFAs) and reduced function of peroxisomal very long chain fatty acyl-CoA synthetase (VLCS) that leads to severe and progressive neurological disability. The X-ALD gene, identified by positional cloning, encodes a peroxisomal membrane protein (adrenoleukodystrophy protein; ALDP) that belongs to the ATP binding cassette transporter protein superfamily. Mutational analyses and functional studies of the X-ALD gene confirm that it and not VLCS is the gene responsible for X-ALD. Its role in the β-oxidation of VLCFAs and its effect on the function of VLCS are unclear. The complex pathology of X-ALD and the extreme variability of its clinical phenotypes are also unexplained. To facilitate understanding of X-ALD pathophysiology, we developed an X-ALD mouse model by gene targeting. The X-ALD mouse exhibits reduced β-oxidation of VLCFAs, resulting in significantly elevated levels of saturated VLCFAs in total lipids from all tissues measured and in cholesterol esters from adrenal glands. Lipid cleft inclusions were observed in adrenocortical cells of X-ALD mice under the electron microscope. No neurological involvement has been detected in X-ALD mice up to 6 months. We conclude that X-ALD mice exhibit biochemical defects equivalent to those found in human X-ALD and thus provide an experimental system for testing therapeutic intervention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutations in a number of cardiac sarcomeric protein genes cause hypertrophic cardiomyopathy (HCM). Previous findings indicate that HCM-causing mutations associated with a truncated cardiac troponin T (TnT) and missense mutations in the β-myosin heavy chain share abnormalities in common, acting as dominant negative alleles that impair contractile performance. In contrast, Lin et al. [Lin, D., Bobkova, A., Homsher, E. & Tobacman, L. S. (1996) J. Clin. Invest. 97, 2842–2848] characterized a TnT point mutation (Ile79Asn) and concluded that it might lead to hypercontractility and, thus, potentially a different mechanism for HCM pathogenesis. In this study, three HCM-causing cardiac TnT mutations (Ile79Asn, Arg92Gln, and ΔGlu160) were studied in a myotube expression system. Functional studies of wild-type and mutant transfected myotubes revealed that all three mutants decreased the calcium sensitivity of force production and that the two missense mutations (Ile79Asn and Arg92Gln) increased the unloaded shortening velocity nearly 2-fold. The data demonstrate that TnT can alter the rate of myosin cross-bridge detachment, and thus the troponin complex plays a greater role in modulating muscle contractile performance than was recognized previously. Furthermore, these data suggest that these TnT mutations may cause disease via an increased energetic load on the heart. This would represent a second paradigm for HCM pathogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for all Paramecium genes examined so far: a single-copy gene (ND7), as well as members of multigene families (centrin genes and trichocyst matrix protein genes) in which all closely related paralogous genes appeared to be affected. This phenomenon may be related to posttranscriptional gene silencing in transgenic plants and quelling in Neurospora and allows the efficient creation of specific mutant phenotypes thus providing a potentially powerful tool to study gene function in Paramecium. For the two multigene families that encode proteins that coassemble to build up complex subcellular structures the analysis presented herein provides the first experimental evidence that the members of these gene families are not functionally redundant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intercistronic region between the maturation and coat-protein genes of RNA phage MS2 contains important regulatory and structural information. The sequence participates in two adjacent stem-loop structures, one of which, the coat-initiator hairpin, controls coat-gene translation and is thus under strong selection pressure. We have removed 19 out of the 23 nucleotides constituting the intercistronic region, thereby destroying the capacity of the phage to build the two hairpins. The deletion lowered coat-protein yield more than 1000-fold, and the titer of the infectious clone carrying the deletion dropped 10 orders of magnitude as compared with the wild type. Two types of revertants were recovered. One had, in two steps, recruited 18 new nucleotides that served to rebuild the two hairpins and the lost Shine-Dalgarno sequence. The other type had deleted an additional six nucleotides, which allowed the reconstruction of the Shine-Dalgarno sequence and the initiator hairpin, albeit by sacrificing the remnants of the other stem-loop. The results visualize the immense genetic repertoire created by, what appears as, random RNA recombination. It would seem that in this genetic ensemble every possible new RNA combination is represented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glucose is the preferred carbon source for most eukaryotic cells and has profound effects on many cellular functions. How cells sense glucose and transduce a signal into the cell is a fundamental, unanswered question. Here we describe evidence that two unusual glucose transporters in the yeast Saccharomyces cerevisiae serve as glucose sensors that generate an intracellular glucose signal. The Snf3p high-affinity glucose transporter appears to function as a low glucose sensor, since it is required for induction of expression of several hexose transporter (HXT) genes, encoding glucose transporters, by low levels of glucose. We have identified another apparent glucose transporter, Rgt2p, that is strikingly similar to Snf3p and is required for maximal induction of gene expression in response to high levels of glucose. This suggests that Rgt2p is a high glucose-sensing counterpart to Snf3p. We identified a dominant mutation in RGT2 that causes constitutive expression of several HXT genes, even in the absence of the inducer glucose. This same mutation introduced into SNF3 also causes glucose-independent expression of HXT genes. Thus, the Rgt2p and Snf3p glucose transporters appear to act as glucose receptors that generate an intracellular glucose signal, suggesting that glucose signaling in yeast is a receptor-mediated process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurotransmitter transporters couple to existing ion gradients to achieve reuptake of transmitter into presynaptic terminals. For coupled cotransport, substrates and ions cross the membrane in fixed stoichiometry. This is in contrast to ion channels, which carry an arbitrary number of ions depending on the channel open time. Members of the gamma-aminobutyric acid transporter gene family presumably function with fixed stoichiometry in which a set number of ions cotransport with one transmitter molecule. Here we report channel-like events from a presumably fixed stoichiometry [norepinephrine (NE)+, Na+, and Cl-], human NE (hNET) in the gamma-aminobutyric acid transporter gene family. These events are stimulated by NE and by guanethidine, an hNET substrate, and they are blocked by cocaine and the antidepressant desipramine. Voltage-clamp data combined with NE uptake data from these same cells indicate that hNETs have two functional modes of conduction: a classical transporter mode (T-mode) and a novel channel mode (C-mode). Both T-mode and C-mode are gated by the same substrates and antagonized by the same blockers. T-mode is putatively electrogenic because the transmitter and cotransported ions sum to one net charge. However, C-mode carries virtually all of the transmitter-induced current, even though it occurs with low probability. This is because each C-mode opening transports hundreds of charges per event. The existence of a channel mode of conduction in a previously established fixed-stoichiometry transporter suggests the appearance of an aqueous pore through the transporter protein during the transport cycle and may have significance for transporter regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nucleotide sequence of the human alpha-albumin gene, including 887 bp of the 5'-flanking region and 1311 bp of the 3-flanking region (24,454 in total), was determined from three overlapping lambda phage clones. The sequence spans 22,256 bp from the cap site to the polyadenylylation site, revealing a gene structure of 15 exons separated by 14 introns. The methionine initiation codon ATG is within exon 1; the termination codon TGA is within exon 14. Exon 15 is entirely untranslated and contains the polyadenylylation signal AATAAA. The deduced polypeptide chain is composed of a 21-amino-acid leader peptide, followed by 578 amino acids of the mature protein. There are seven repetitive DNA elements (Alu and Kpn) in the introns and 3-flanking region. The sizes of the 15 alpha-albumin exons match closely those of the albumin, alpha-fetoprotein, and vitamin D-binding protein genes. The exons are symmetrically placed within the three domains of the individual proteins, and they share a characteristic codon splitting pattern that is conserved among members of the gene family. The results provide strong evidence that alpha-albumin belongs to, and most likely completes with, the serum albumin gene family. Based on structural similarity, alpha-albumin appears to be most closely related to alpha-fetoprotein. The complete structure of this family of four tandemly linked genes provides a well-characterized approximately 200 kb locus in the 4q subcentromeric region of the human genome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semaphorins and collapsins make up a family of conserved genes that encode nerve growth cone guidance signals. We have identified two additional members of the human semaphorin family [human semaphorin A(V) and human semaphorin IV] in chromosome region 3p21.3, where several small cell lung cancer (SCLC) cell lines exhibit homozygous deletions indicative of a tumor suppressor gene. Human semaphorin A(V) has 86% amino acid homology with murine semaphorin A, whereas semaphorin IV is most closely related to murine semaphorin E, with 50% homology. These semaphorin genes are approximately 70 kb apart flanking two GTP-binding protein genes, GNAI-2 and GNAT-1. In contrast, other human semaphorin gene sequences (human semaphorin III and homologues of murine semaphorins B and C) are not located on chromosome 3. Human semaphorin A(V) is translated in vitro into a 90-kDa protein, which accumulates at the endoplasmic reticulum. The human semaphorin A(V) (3.4-kb mRNA) and IV (3.9- and 2.9-kb mRNAs) genes are expressed abundantly but differentially in a variety of human neural and nonneural tissues. Human semaphorin A(V) was expressed in only 1 out of 23 SCLCs and 7 out of 16 non-SCLCs, whereas semaphorin IV was expressed in 19 out of 23 SCLCs and 13 out of 16 non-SCLCs. Mutational analysis in semaphorin A(V) revealed mutations (germ line in one case) in 3 of 40 lung cancers. Our data suggest the need to determine the function of human semaphorins A(V) and IV in nonneural tissues and their role in the pathogenesis of lung cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While studies of the regulation of gene expression have generally concerned qualitative changes in the selection or the level of expression of a gene, much of the regulation that occurs within a cell involves the continuous subtle optimization of the levels of proteins used in macromolecular complexes. An example is the biosynthesis of the ribosome, in which equimolar amounts of nearly 80 ribosomal proteins must be supplied by the cytoplasm to the nucleolus. We have found that the transcript of one of the ribosomal protein genes of Saccharomyces cerevisiae, RPL32, participates in such fine tuning. Sequences from exon I of the RPL32 transcript interact with nucleotides from the intron to form a structure that binds L32 to regulate splicing. In the spliced transcript, the same sequences interact with nucleotides from exon II to form a structure that binds L32 to regulate translation, thus providing two levels of autoregulation. We now show, by using a sensitive cocultivation assay, that these RNA structures and their interaction with L32 play a role in the fitness of the cell. The change of a single nucleotide within the 5' leader of the RPL32 transcript, which abolishes the site for L32 binding, leads to detectably slower growth and to eventual loss of the mutant strain from the culture. Experiments designed to assess independently the regulation of splicing and the regulation of translation are presented. These observations demonstrate that, in evolutionary terms, subtle regulatory compensations can be critical. The change in structure of an RNA, due to alteration of just one noncoding nucleotide, can spell the difference between biological success and failure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some bacterial pathogens elaborate and secrete virulence factors in response to environmental signals, others in response to a specific host product, and still others in response to no discernible cue. In this study, we have demonstrated that the synthesis of Staphylococcus aureus virulence factors is controlled by a density-sensing system that utilizes an octapeptide produced by the organism itself. The octapeptide activates expression of the agr locus, a global regulator of the virulence response. This response involves the reciprocal regulation of genes encoding surface proteins and those encoding secreted virulence factors. As cells enter the postexponential phase, surface protein genes are repressed by agr and secretory protein genes are subsequently activated. The intracellular agr effector is a regulatory RNA, RNAIII, whose transcription is activated by an agr-encoded signal transduction system for which the octapeptide is the ligand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prolactin (PRL) induces transcriptional activation of milk protein genes, such as the whey acidic protein (WAP), beta-casein, and beta-lactoglobulin genes, through a signaling cascade encompassing the Janus kinase Jak2 and the mammary gland factor (MGF; also called Stat5), which belongs to the family of proteins of signal transducers and activators of transcription (STAT). We isolated and sequenced from mouse mammary tissue Stat5 mRNA and a previously unreported member, which we named Stat5b (Stat5 is renamed to Stat5a). On the protein level Stat5a and Stat5b show a 96% sequence similarity. The 5' and 3' untranslated regions of the two mRNAs are not conserved. Stat5a comprises 793 amino acids and is encoded by a mRNA of 4.2 kb. The Stat5b mRNA has a size of 5.6 kb and encodes a protein of 786 amino acids. Both Stat5a and Stat5b recognized the GAS site (gamma-interferon-activating sequence; TTCNNNGAA) in vitro and mediated PRL-induced transcription in COS cells transfected with a PRL receptor. Stat5b also induced basal transcription in the absence of PRL. Similar levels of Stat5a and Stat5b mRNAs were found in most tissues of virgin and lactating mice, but a differential accumulation of the Stat5 mRNAs was found in muscle and mammary tissue. The two RNAs are present in mammary tissue of immature virgin mice, and their levels increase up to day 16 of pregnancy, followed by a decline during lactation. The increase of Stat5 expression during pregnancy coincides with the activation of the WAP gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In response to infection by Rhizobium, highly differentiated organs called nodules form on legume roots. Within these organs, the symbiotic association between the host plant and bacteria is established. A putative plant transcription factor, NMH7, has been identified in alfalfa root nodules. nmh7 contains a MADS-box DNA-binding region and shows homology to flower homeotic genes. This gene is a member of a multigene family in alfalfa and was identified on the basis of nucleic acid homology to plant regulatory protein genes (MADS-box-containing genes) from Antirrhinum and Arabidopsis. RNA analysis and in situ hybridization showed that expression of this class of regulatory genes is limited to the infected cells of alfalfa root nodules and is likely to be involved in the signal transduction pathway initiated by the bacterial symbiont, Rhizobium meliloti. The expression of nmh7 in a root-derived organ is unusual for this class of regulatory genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Long distance transport of amino acids is mediated by several families of differentially expressed amino acid transporters. The two genes AAP1 and AAP2 encode broad specificity H+-amino acid co-transporters and are expressed to high levels in siliques of Arabidopsis, indicating a potential role in supplying the seeds with organic nitrogen. The expression of both genes is developmentally controlled and is strongly induced in siliques at heart stage of embryogenesis, shortly before induction of storage protein genes. Histochemical analysis of transgenic plants expressing promoter-GUS fusions shows that the genes have non-overlapping expression patterns in siliques. AAP1 is expressed in the endosperm and the cotyledons whereas AAP2 is expressed in the vascular strands of siliques and in funiculi. The endosperm expression of AAP1 during early stages of seed development indicates that the endosperm serves as a transient storage tissue for organic nitrogen. Amino acids are transported in both xylem and phloem but during seed filling are imported only via the phloem. AAP2, which is expressed in the phloem of stems and in the veins supplying seeds, may function in uptake of amino acids assimilated in the green silique tissue, in the retrieval of amino acids leaking passively out of the phloem and in xylem-to-phloem transfer along the path. The promoters provide excellent tools to study developmental, hormonal and metabolic control of nitrogen nutrition during development and may help to manipulate the timing and composition of amino acid import into seeds.