989 resultados para Transportation cost
Resumo:
Ground delay programs typically involve the delaying of aircraft that are departing from origin airports within some set distance of a capacity constrained destination airport. Long haul flights are not delayed in this way. A trade-off exists when fixing the distance parameter: increasing the ‘scope’ distributes delay among more aircraft and may reduce airborne holding delay but could also result in unnecessary delay in the (frequently observed) case of early program cancellation. In order to overcome part of this drawback, a fuel based cruise speed reduction strategy aimed at realizing airborne delay, was suggested by the authors in previous publications. By flying slower, at a specific speed, aircraft that are airborne can recover part of their initially assigned delay without incurring extra fuel consumption if the ground delay program is canceled before planned. In this paper, the effect of the scope of the program is assessed when applying this strategy. A case study is presented by analyzing all the ground delay programs that took place at San Francisco, Newark Liberty and Chicago O’Hare International airports during one year. Results show that by the introduction of this technique it is possible to define larger scopes, partially reducing the amount of unrecovered delay.
Resumo:
En route speed reduction can be used for air traffic flow management (ATFM), e.g., delaying aircraft while airborne or realizing metering at an arrival fix. In previous publications, the authors identified the flight conditions that maximize the airborne delay without incurring extra fuel consumption with respect to the nominal (not delayed) flight. In this paper, the effect of wind on this strategy is studied, and the sensitivity to wind forecast errors is also assessed. A case study done in Chicago O’Hare airport (ORD) is presented, showing that wind has a significant effect on the airborne delay that can be realized and that, in some cases, even tailwinds might lead to an increase in the maximum amount of airborne delay. The values of airborne delay are representative enough to suggest that this speed reduction technique might be useful in a real operational scenario. Moreover, the speed reduction strategy is more robust than nominal operations against fuel consumption in the presence of wind forecast uncertainties.
Resumo:
The paper empirically tests the relationship between earnings volatility and cost of debt with a sample of more than 77,000 Swedish limited companies over the period 2006 to 2013 observing more than 677,000 firm years. As called upon by many researchers recently that there is very limited evidence of the association between earnings volatility and cost of debt this paper contributes greatly to the existing literature of earnings quality and debt contracts, especially on the consequence of earnings quality in the debt market. Earnings volatility is a proxy used for earnings quality while cost of debt is a component of debt contract. After controlling for firms’ profitability, liquidity, solvency, cashflow volatility, accruals volatility, sales volatility, business risk, financial risk and size this paper studies the effect of earnings volatility measured by standard deviation of Earnings Before Interest, Taxes, Depreciation and Amortization (EBITDA) on Cost of Debt. Overall finding suggests that lenders in Sweden does take earnings volatility into consideration while determining cost of debt for borrowers. But a deeper analysis of various industries suggest earnings volatility is not consistently used by lenders across all the industries. Lenders in Sweden are rather more sensitive to borrowers’ financial risk across all the industries. It may also be stated that larger borrowers tend to secure loans at a lower interest rate, the results are consistent with majority of the industries. Swedish debt market appears to be well prepared for financial crises as the debt crisis seems to have no or little adverse effect borrowers’ cost of capital. This study is the only empirical evidence to study the association between earnings volatility and cost of debt. Prior indirect research suggests earnings volatility has a negative effect on cost debt (i.e. an increase in earnings volatility will increase firm’s cost of debt). Our direct evidence from the Swedish debt market is consistent for some industries including media, real estate activities, transportation & warehousing, and other consumer services.
Resumo:
Laser scanning is a terrestrial laser-imaging system that creates highly accurate three-dimensional images of objects for use in standard computer-aided design software packages. This report describes results of a pilot study to investigate the use of laser scanning for transportation applications in Iowa. After an initial training period on the use of the scanner and Cyclone software, pilot tests were performed on the following projects: intersection and railroad bridge for training purposes; section of highway to determine elevation accuracy and pair of bridges to determine level of detail that can be captured; new concrete pavement to determine smoothness; bridge beams to determine camber for deck-loading calculations; stockpile to determine volume; and borrow pit to determine volume. Results show that it is possible to obtain 2-6 mm precision with the laser scanner as claimed by the manufacturer compared to approximately one-inch precision with aerial photogrammetry using a helicopter. A cost comparison between helicopter photogrammetry and laser scanning showed that laser scanning was approximately 30 percent higher in cost depending on assumptions. Laser scanning can become more competitive to helicopter photogrammetry by elevating the scanner on a boom truck and capturing both sides of a divided roadway at the same time. Two- and three-dimensional drawings were created in MicroStation for one of the scanned highway bridges. It was demonstrated that it is possible to create such drawings within the accuracy of this technology. It was discovered that a significant amount of time is necessary to convert point cloud images into drawings. As this technology matures, this task should become less time consuming. It appears that laser scanning technology does indeed have a place in the Iowa Department of Transportation design and construction toolbox. Based on results from this study, laser scanning can be used cost effectively for preliminary surveys to develop TIN meshes of roadway surfaces. It also appears that this technique can be used quite effectively to measure bridge beam camber in a safer and quicker fashion compared to conventional approaches. Volume calculations are also possible using laser scanning. It seems that measuring quantities of rock could be an area where this technology would be quite beneficial since accuracy is more important with this material compared to soil. Other applications for laser scanning could include developing as-built drawings of historical structures such as the bridges of Madison County. This technology could also be useful where safety is a concern such as accurately measuring the surface of a highway active with traffic or scanning the underside of a bridge damaged by a truck. It is recommended that the Iowa Department of Transportation initially rent the scanner when it is needed and purchase the software. With time, it may be cost justifiable to purchase the scanner as well. Laser scanning consultants can be hired as well but at a higher cost.
Resumo:
The objective of the evaluation of the weather forecasting services used by the Iowa Department of Transportation is to ascertain the accuracy of the forecasts given to maintenance personnel and to determine whether the forecasts are useful in the decision-making process and whether the forecasts have potential for improving the level of service. The Iowa Department of Transportation has estimated the average cost of fighting a winter storm to be about $60,000 to $70,000 per hour. This final report is to provide an evaluation report describing the collection of weather data and information associated with the weather forecasting services provided to the Iowa Department of Transportation and its maintenance activities and to determine their impact in winter maintenance decision-making.
Resumo:
The spirit behind the creation of the task force is one of good government. It rests upon the basic premise that taxpayers demand the best service possible for their tax dollars. Combine this demand for efficiency with Iowa's aging roadway system, and a projected increase in the state's vehicle miles traveled, the need to examine cost savings becomes apparent. Beyond the rational for good and efficient government, however, is a major concern for potential future reductions in Federal highway funds. Iowa is likely entering a period of needing an expanded transportation system with at best a static capacity for maintenance and construction.
Resumo:
Recent developments in automation, robotics and artificial intelligence have given a push to a wider usage of these technologies in recent years, and nowadays, driverless transport systems are already state-of-the-art on certain legs of transportation. This has given a push for the maritime industry to join the advancement. The case organisation, AAWA initiative, is a joint industry-academia research consortium with the objective of developing readiness for the first commercial autonomous solutions, exploiting state-of-the-art autonomous and remote technology. The initiative develops both autonomous and remote operation technology for navigation, machinery, and all on-board operating systems. The aim of this study is to develop a model with which to estimate and forecast the operational costs, and thus enable comparisons between manned and autonomous cargo vessels. The building process of the model is also described and discussed. Furthermore, the model’s aim is to track and identify the critical success factors of the chosen ship design, and to enable monitoring and tracking of the incurred operational costs as the life cycle of the vessel progresses. The study adopts the constructive research approach, as the aim is to develop a construct to meet the needs of a case organisation. Data has been collected through discussions and meeting with consortium members and researchers, as well as through written and internal communications material. The model itself is built using activity-based life cycle costing, which enables both realistic cost estimation and forecasting, as well as the identification of critical success factors due to the process-orientation adopted from activity-based costing and the statistical nature of Monte Carlo simulation techniques. As the model was able to meet the multiple aims set for it, and the case organisation was satisfied with it, it could be argued that activity-based life cycle costing is the method with which to conduct cost estimation and forecasting in the case of autonomous cargo vessels. The model was able to perform the cost analysis and forecasting, as well as to trace the critical success factors. Later on, it also enabled, albeit hypothetically, monitoring and tracking of the incurred costs. By collecting costs this way, it was argued that the activity-based LCC model is able facilitate learning from and continuous improvement of the autonomous vessel. As with the building process of the model, an individual approach was chosen, while still using the implementation and model building steps presented in existing literature. This was due to two factors: the nature of the model and – perhaps even more importantly – the nature of the case organisation. Furthermore, the loosely organised network structure means that knowing the case organisation and its aims is of great importance when conducting a constructive research.
Resumo:
This dissertation is composed of three essays covering two areas of interest. The first topic is personal transportation demand with a focus on price and fuel efficiency elasticities of mileage demand, challenging assumptions common in the rebound effect literature. The second topic is consumer finance with a focus on small loans. The first chapter creates separate variables for fuel prices during periods of increasing and decreasing prices as well as an observed fuel economy measure to empirically test the equivalence of these elasticities. Using a panel from Germany from 1997 to 2009 I find a fuel economy elasticity of mileage of 53.3%, which is significantly different from the gas price elasticity of mileage during periods of decreasing gas prices, 4.8%. I reject the null hypothesis or price symmetry, with the elasticity of mileage during period of increasing gas prices ranging from 26.2% and 28.9%. The second chapter explores the potential for the rebound effect to vary with income. Panel data from U.S. households from 1997 to 2003 is used to estimate the rebound effect in a median regression. The estimated rebound effect independent of income ranges from 17.8% to 23.6%. An interaction of income and fuel economy is negative and significant, indicating that the rebound effect may be much higher for low income individuals and decreases with income; the rebound effect for low income households ranged from 80.3% to 105.0%, indicating that such households may increase gasoline consumption given an improvement in fuel economy. The final chapter documents the costs of credit instruments found in major mail order catalogs throughout the 20th century. This study constructs a new dataset and finds that the cost of credit increased and became stickier as mail order retailers switched from an installment-style closed-end loan to a revolving-style credit card. This study argues that revolving credit's ability to decrease salience of credit costs in the price of goods is the best explanation for rate stickiness in the mail order industry as well as for the preference of revolving credit among retailers.
Resumo:
Many important problems in communication networks, transportation networks, and logistics networks are solved by the minimization of cost functions. In general, these can be complex optimization problems involving many variables. However, physicists noted that in a network, a node variable (such as the amount of resources of the nodes) is connected to a set of link variables (such as the flow connecting the node), and similarly each link variable is connected to a number of (usually two) node variables. This enables one to break the problem into local components, often arriving at distributive algorithms to solve the problems. Compared with centralized algorithms, distributed algorithms have the advantages of lower computational complexity, and lower communication overhead. Since they have a faster response to local changes of the environment, they are especially useful for networks with evolving conditions. This review will cover message-passing algorithms in applications such as resource allocation, transportation networks, facility location, traffic routing, and stability of power grids.
Resumo:
The damage Hurricane Sandy caused had far-reaching repercussions up and down the East Coast of the United States. Vast coastal flooding accompanied the storm, inundating homes, businesses, and utility and emergency facilities. Since the storm, projects to mitigate similar future floods have been scrutinized. Such projects not only need to keep out floodwaters but also be designed to withstand the effect that climate change might have on rising sea levels and increased flood risk. In this study, we develop an economic model to assess the costs and benefits of a berm (sea wall) to mitigate the effects of flooding from a large storm. We account for the lifecycle costs of the project, which include those for the upfront construction of the berm, ongoing maintenance, land acquisition, and wetland and recreation zone construction. Benefits of the project include avoided fatalities, avoided residential and commercial damages, avoided utility and municipal damages, recreational and health benefits, avoided debris removal expenses, and avoided loss of function of key transportation and commercial infrastructure located in the area. Our estimate of the beneficial effects of the berm includes ecosystem services from wetlands and health benefits to the surrounding community from a park and nature system constructed along the berm. To account for the effects of climate change and verify that the project will maintain its effectiveness over the long term, we allow the risk of flooding to increase over time. Over our 50-year time horizon, we double the risk of 100- and 500-year flood events to account for the effects of sea level rise on coastal flooding. Based on the economic analysis, the project is highly cost beneficial over its 50-year timeframe. This analysis demonstrates that climate change adaptation investments can be cost beneficial even though they mitigate the impacts of low-probability, high-consequence events.
Resumo:
Transportation research makes a difference for Iowans and the nation. Implementation of cost effective research projects contributes to a transportation network that is safer, more efficient, and longer lasting. Working in cooperation with our partners from universities, industry, other states, and FHWA, as well as participation in the Transportation Research Board (TRB), provides benefits for every facet of the DOT. This allows us to serve our communities and the traveling public more effectively. Pooled fund projects allow leveraging of funds for higher returns on investments. In 2010, Iowa led fifteen active pooled fund studies, participated in twenty-two others, and was wrapping-up, reconciling, and closing out an additional 6 Iowa Led pooled fund studies. In addition, non-pooled fund SPR projects included approximately 20 continued, 9 new, and over a dozen reoccurring initiatives such as the technical transfer/training program. Additional research is managed and conducted by the Office of Traffic and Safety and other departments in the Iowa DOT.
Resumo:
Les méthodes de design et de construction des routes développés dans le sud canadien ont maintenant besoin d’être adaptés aux environnements nordiques du pays afin de prévenir le dégel dramatique du pergélisol lors de la construction d’une nouvelle route. De plus, le réchauffement climatique occasionne présentement d’importants problèmes de stabilité des sols dans le nord canadien. Ces facteurs causent des pertes importantes au niveau des capacités fonctionnelles et structurales de l’Alaska Highway au Yukon sur un segment de plus de 200 km situé entre le village de Destruction Bay et la frontière de l’Alaska. Afin de trouver des solutions rentables à long terme, le ministère du transport du Yukon (en collaboration avec le Federal Highway Administration du gouvernement américain, Transports Canada, l’Université Laval, l’Université de Montréal et l’Alaska University transportation Center) a mis en place 12 sections d’essais de 50 mètres de longueur sur l’autoroute de l’Alaska près de Beaver Creek en 2008. Ces différentes sections d’essais ont été conçues pour évaluer une ou plusieurs méthodes combinées de stabilisation thermique telles que le drain thermique, le remblai à convection d’air, le pare-neige / pare-soleil, le remblai couvert de matières organiques, les drains longitudinaux, le déblaiement de la neige sur les pentes et la surface réfléchissante. Les objectifs spécifiques de la recherche sont 1) d’établir les régimes thermiques et les flux de chaleur dans chacune des sections pour les 3 premières années de fonctionnement ; 2) de documenter les facteurs pouvant favoriser ou nuire à l’efficacité des systèmes de protection et ; 3) de déterminer le rapport coûts/bénéfices à long terme pour chacune des techniques utilisées. Pour ce faire, une nouvelle méthode d’analyse, basée sur la mesure de flux d’extraction de chaleur Hx et d’induction Hi à l’interface entre le remblai et le sol naturel, a été utilisée dans cette étude. Certaines techniques de protection du pergélisol démontrent un bon potentiel durant leurs 3 premières années de fonctionnement. C’est le cas pour le remblai à convection d’air non-couvert, le remblai à convection d’air pleine largeur, les drains longitudinaux, le pare-soleil / pare-neige et la surface réfléchissante. Malheureusement, des problèmes dans l’installation des drains thermiques ont empêché une évaluation complète de leur efficacité.