923 resultados para Transplantation cardiaque
Resumo:
Although the potential role of Pim2 as a cooperative oncogene has been well described in lymphoma, its role in leukemia has remained largely unexplored. Here we show that high expression of Pim2 is observed in patients with acute promyelocytic leukemia (APL). To further characterize the cooperative role of Pim2 with promyelocytic leukemia/retinoic acid receptor alpha (PML/RAR alpha), we used a well-established PML-RAR alpha (PR alpha) mouse model. Pim2 coexpression in PR alpha-positive hematopoietic progenitor cells (HPCs) induces leukemia in recipient mice after a short latency. Pim2-PR alpha cells were able to repopulate mice in serial transplantations and to induce disease in all recipients. Neither Pim2 nor PR alpha alone was sufficient to induce leukemia upon transplantation in this model. The disease induced by Pim2 overexpression in PR alpha cells contained a slightly higher fraction of immature myeloid cells, compared with the previously described APL disease induced by PR alpha. However, it also clearly resembled an APL-like phenotype and showed signs of differentiation upon all-trans retinoic acid (ATRA) treatment in vitro. These results support the hypothesis that Pim2, which is also a known target of Flt3-ITD (another gene that cooperates with PML-RAR alpha), cooperates with PR alpha to induce APL-like disease. (Blood. 2010; 115(22): 4507-4516)
Resumo:
Background: We investigated the incidence of chronic kidney disease (CKD) in the United Kingdom heart transplant population, identified risk factors for the development of CKD, and assessed the impact of CKD on subsequent survival.
Methods: Data from the UK Cardiothoracic Transplant Audit and UK Renal Registry were linked for 1732 adult heart transplantations, 1996 to 2007. Factors influencing time to CKD, defined as National Kidney Foundation CKD stage 4 or 5 or preemptive kidney transplantation, were identified using a Cox proportional hazards model. The effects of distinct CKD stages on survival were evaluated using time-dependent covariates.
Results: A total of 3% of patients had CKD at transplantation, 11% at 1-year and more than 15% at 6 years posttransplantation and beyond. Earlier transplantations, shorter ischemia times, female, older, hepatitis C virus positive, and diabetic recipients were at increased risk of developing CKD, along with those with impaired renal function pretransplantation or early posttransplantation. Significant differences between transplantation centers were also observed. The risk of death was significantly higher for patients at CKD stage 4, stage 5 (excluding dialysis), or on dialysis, compared with equivalent patients surviving to the same time point with CKD stage 3 or lower (hazard ratios of 1.66, 8.54, and 4.07, respectively).
Conclusions: CKD is a common complication of heart transplantation in the UK, and several risk factors identified in other studies are also relevant in this population. By linking national heart transplantation and renal data, we have determined the impact of CKD stage and dialysis treatment on subsequent survival in heart transplant recipients.
Resumo:
Substantial progress has been made in identifying genetic loci associated with multifactorial disorders, including variants that seem to impact outcomes following solid organ transplantation. Despite these advances, much of the heritability and susceptibility to chronic disease processes remains unexplained. Epigenetic modifications may exert their effect independently or complementary to genetic variants. Epigenetic modifications can change gene expression without altering the DNA sequence. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. The impact of epigenetic phenomena on the outcomes of organ transplantation is currently poorly understood. Epigenetic modifications can occur during periods of illness; these may persist and potentially influence allograft outcomes. Epigenetic mechanisms influence the activation, proliferation, and differentiation of the immune cells involved in allograft rejection. The donor's epigenome may also impact transplant survival, and initial research has demonstrated that peritransplant conditions induce rapid epigenetic modification within the allograft. Further research will help to define the importance of epigenetic modifications in transplantation. This will potentially lead to the identification of useful biomarkers and the development of novel pharmacotherapies. This review explores the nature of epigenetic modification in disease and the emerging evidence for epigenetic influences on allograft survival.