885 resultados para Transmission system planning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The worldwide trend for the deregulation of the electricity generation and transmission industries has led to dramatic changes in system operation and planning procedures. The optimum approach to transmission-expansion planning in a deregulated environment is an open problem especially when the responsibilities of the organisations carrying out the planning work need to be addressed. To date there is a consensus that the system operator and network manager perform the expansion planning work in a centralised way. However, with an increasing input from the electricity market, the objectives, constraints and approaches toward transmission planning should be carefully designed to ensure system reliability as well as meeting the market requirements. A market-oriented approach for transmission planning in a deregulated environment is proposed. Case studies using the IEEE 14-bus system and the Australian national electricity market grid are performed. In addition, the proposed method is compared with a traditional planning method to further verify its effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transit Capacity Analysis critical to urban system Planning Design, Operation Productive Performance Analysis not so well detailed This study extends TRB’s & Vuchic’s work in this area

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past few years, the Midwest ISO has experienced a surge in requests to interconnect large amounts of wind generation, driven largely by a favorable political environment and an abundant wind resource in the Midwestern US. This tremendous influx of proposed generators along with a highly constrained transmission system adversely impacted interconnection queue processing, resulting in an unmanageable backlog. Under these circumstances, Midwest ISO successfully reformed the interconnection tariff to improve cycle times and provide increased certainty to interconnection customers. One of the key features of the reformed queue process is the System Planning and Analysis (SPA) phase which allows integration of the interconnection studies with regional transmission planning. This paper presents a brief background of the queue reform effort and then delves deeply in to the work performed at the Midwest ISO during the first SPA cycle - the study approach, the challenges faced in having to study over 50,000 MWs of wind generation and the effective solutions designed to complete these studies within tariff timelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Radio Frequency (RF) based digital data transmission scheme with 8 channel encoder/decoder ICs is proposed for surface electrode switching of a 16-electrode wireless Electrical Impedance Tomography (EIT) system. A RF based wireless digital data transmission module (WDDTM) is developed and the electrode switching of a EIT system is studied by analyzing the boundary data collected and the resistivity images of practical phantoms. An analog multiplexers based electrode switching module (ESM) is developed with analog multiplexers and switched with parallel digital data transmitted by a wireless transmitter/receiver (T-x/R-x) module working with radio frequency technology. Parallel digital bits are generated using NI USB 6251 card working in LabVIEW platform and sent to transmission module to transmit the digital data to the receiver end. The transmitter/receiver module developed is properly interfaced with the personal computer (PC) and practical phantoms through the ESM and USB based DAQ system respectively. It is observed that the digital bits required for multiplexer operation are sequentially generated by the digital output (D/O) ports of the DAQ card. Parallel to serial and serial to parallel conversion of digital data are suitably done by encoder and decoder ICs. Wireless digital data transmission module successfully transmitted and received the parallel data required for switching the current and voltage electrodes wirelessly. 1 mA, 50 kHz sinusoidal constant current is injected at the phantom boundary using common ground current injection protocol and the boundary potentials developed at the voltage electrodes are measured. Resistivity images of the practical phantoms are reconstructed from boundary data using EIDORS. Boundary data and the resistivity images reconstructed from the surface potentials are studied to assess the wireless digital data transmission system. Boundary data profiles of the practical phantom with different configurations show that the multiplexers are operating in the required sequence for common ground current injection protocol. The voltage peaks obtained at the proper positions in the boundary data profiles proved the sequential operation of multiplexers and successful wireless transmission of digital bits. Reconstructed images and their image parameters proved that the boundary data are successfully acquired by the DAQ system which in turn again indicates a sequential and proper operation of multiplexers as well as the successful wireless transmission of digital bits. Hence the developed RF based wireless digital data transmission module (WDDTM) is found suitable for transmitting digital bits required for electrode switching in wireless EIT data acquisition system. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transmission network planning problem is a non-linear integer mixed programming problem (NLIMP). Most of the algorithms used to solve this problem use a linear programming subroutine (LP) to solve LP problems resulting from planning algorithms. Sometimes the resolution of these LPs represents a major computational effort. The particularity of these LPs in the optimal solution is that only some inequality constraints are binding. This task transforms the LP into an equivalent problem with only one equality constraint (the power flow equation) and many inequality constraints, and uses a dual simplex algorithm and a relaxation strategy to solve the LPs. The optimisation process is started with only one equality constraint and, in each step, the most unfeasible constraint is added. The logic used is similar to a proposal for electric systems operation planning. The results show a higher performance of the algorithm when compared to primal simplex methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, power system operation becomes more complex because of the critical operating conditions resulting from the requirements of a market-driven operation. In this context, efficient methods for optimisation of power system operation and planning become critical to satisfy the operational (technical), financial and economic demands. Therefore, the detailed analysis of modern optimisation techniques as well as their application to the power system problems represent a relevant issue from the scientific and technological points of view. This paper presents a brief overview of the developments on modern mathematical optimisation methods applied to power system operation and planning. Copyright © 2007 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enhanced genetic algorithm (EGA) is applied to solve the long-term transmission expansion planning (LTTEP) problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1) generation of an initial population using fast, efficient heuristic algorithms, (2) better implementation of the local improvement phase and (3) efficient solution of linear programming problems (LPs). Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem. Copyright © 2012 Luis A. Gallego et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing studies that question the role of planning as a state institution, whose interests it serves together with those disputing the merits of collaborative planning are all essentially concerned with the broader issue of power in society. Although there have been various attempts to highlight the distorting effects of power, the research emphasis to date has been focused on the operation of power within the formal structures that constitute the planning system. As a result, relatively little attention has been attributed to the informal strategies or tactics that can be utilised by powerful actors to further their own interests. This article seeks to address this gap by identifying the informal strategies used by the holders of power to bypass the formal structures of the planning system and highlight how these procedures are to a large extent systematic and (almost) institutionalised in a shadow planning system. The methodology consists of a series of semi-structured qualitative interviews with 20 urban planners working across four planning authorities within the Greater Dublin Area, Ireland. Empirical findings are offered that highlight the importance of economic power in the emergence of what essentially constitutes a shadow planning system. More broadly, the findings suggest that much more cognisance of the structural relations that govern how power is distributed in society is required and that ‘light touch’ approaches that focus exclusively on participation and deliberation need to be replaced with more radical solutions that look towards the redistribution of economic power between stakeholders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a static synchronous series compensator (SSSC), along with a fixed capacitor, is used to avoid torsional mode instability in a series compensated transmission system. A 48-step harmonic neutralized inverter is used for the realization of the SSSC. The system under consideration is the IEEE first benchmark model on SSR analysis. The system stability is studied both through eigenvalue analysis and EMTDC/PSCAD simulation studies. It is shown that the combination of the SSSC and the fixed capacitor improves the synchronizing power coefficient. The presence of the fixed capacitor ensures increased damping of small signal oscillations. At higher levels of fixed capacitor compensation, a damping controller is required to stabilize the torsional modes of SSR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The flying capacitor multilevel inverter (FCMLI) is a multiple voltage level inverter topology intended for high-power and high-voltage operations at low distortion. It uses capacitors, called flying capacitors, to clamp the voltage across the power semiconductor devices. A method for controlling the FCMLI is proposed which ensures that the flying capacitor voltages remain nearly constant using the preferential charging and discharging of these capacitors. A static synchronous compensator (STATCOM) and a static synchronous series compensator (SSSC) based on five-level flying capacitor inverters are proposed. Control schemes for both the FACTS controllers are developed and verified in terms of voltage control, power flow control, and power oscillation damping when installed in a single-machine infinite bus (SMIB) system. Simulation studies are performed using PSCAD/EMTDC to validate the efficacy of the control scheme and the FCMLI-based flexible alternating current transmission system (FACTS) controllers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a comprehensive approach to the planning of distribution networks and the control of microgrids. Firstly, a Modified Discrete Particle Swarm Optimization (MDPSO) method is used to optimally plan a distribution system upgrade over a 20 year planning period. The optimization is conducted at different load levels according to the anticipated load duration curve and integrated over the system lifetime in order to minimize its total lifetime cost. Since the optimal solution contains Distributed Generators (DGs) to maximize reliability, the DG must be able to operate in islanded mode and this leads to the concept of microgrids. Thus the second part of the paper reviews some of the challenges of microgrid control in the presence of both inertial (rotating direct connected) and non-inertial (converter interfaced) DGs. More specifically enhanced control strategies based on frequency droop are proposed for DGs to improve the smooth synchronization and real power sharing minimizing transient oscillations in the microgrid. Simulation studies are presented to show the effectiveness of the control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The IEEE Reliability Test System (RTS) developed by the Application of Probability Method Subcommittee has been used to compare and test a wide range of generating capacity and composite system evaluation techniques and subsequent digital computer programs. A basic reliability test system is presented which has evolved from the reliability education and research programs conducted by the Power System Research Group at the University of Saskatchewan. The basic system data necessary for adequacy evaluation at the generation and composite generation and transmission system levels are presented together with the fundamental data required to conduct reliability-cost/reliability-worth evaluation