943 resultados para Transmission geometries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weather variables, mainly temperature and humidity influence vectors, viruses, human biology, ecology and consequently the intensity and distribution of the vector-borne diseases. There is evidence that warmer temperature due to climate change will influence the dengue transmission. However, long term scenario-based projections are yet to be developed. Here, we assessed the impact of weather variability on dengue transmission in a megacity of Dhaka, Bangladesh and projected the future dengue risk attributable to climate change. Our results show that weather variables particularly temperature and humidity were positively associated with dengue transmission. The effects of weather variables were observed at a lag of four months. We projected that assuming a temperature increase of 3.3 °C without any adaptation measure and changes in socio-economic condition, there will be a projected increase of 16,030 dengue cases in Dhaka by the end of this century. This information might be helpful for the public health authorities to prepare for the likely increase of dengue due to climate change. The modelling framework used in this study may be applicable to dengue projection in other cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue virus (DENV) transmission in Australia is driven by weather factors and imported dengue fever (DF) cases. However, uncertainty remains regarding the threshold effects of high-order interactions among weather factors and imported DF cases and the impact of these factors on autochthonous DF. A time-series regression tree model was used to assess the threshold effects of natural temporal variations of weekly weather factors and weekly imported DF cases in relation to incidence of weekly autochthonous DF from 1 January 2000 to 31 December 2009 in Townsville and Cairns, Australia. In Cairns, mean weekly autochthonous DF incidence increased 16.3-fold when the 3-week lagged moving average maximum temperature was <32 °C, the 4-week lagged moving average minimum temperature was ≥24 °C and the sum of imported DF cases in the previous 2 weeks was >0. When the 3-week lagged moving average maximum temperature was ≥32 °C and the other two conditions mentioned above remained the same, mean weekly autochthonous DF incidence only increased 4.6-fold. In Townsville, the mean weekly incidence of autochthonous DF increased 10-fold when 3-week lagged moving average rainfall was ≥27 mm, but it only increased 1.8-fold when rainfall was <27 mm during January to June. Thus, we found different responses of autochthonous DF incidence to weather factors and imported DF cases in Townsville and Cairns. Imported DF cases may also trigger and enhance local outbreaks under favorable climate conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To identify the meteorological drivers of dengue vector density and determine high- and low-risk transmission zones for dengue prevention and control in Cairns, Australia. METHODS Weekly adult female Ae. aegypti data were obtained from 79 double sticky ovitraps (SOs) located in Cairns for the period September 2007-May 2012. Maximum temperature, total rainfall and average relative humidity data were obtained from the Australian Bureau of Meteorology for the study period. Time series-distributed lag nonlinear models were used to assess the relationship between meteorological variables and vector density. Spatial autocorrelation was assessed via semivariography, and ordinary kriging was undertaken to predict vector density in Cairns. RESULTS Ae. aegypti density was associated with temperature and rainfall. However, these relationships differed between short (0-6 weeks) and long (0-30 weeks) lag periods. Semivariograms showed that vector distributions were spatially autocorrelated in September 2007-May 2008 and January 2009-May 2009, and vector density maps identified high transmission zones in the most populated parts of Cairns city, as well as Machans Beach. CONCLUSION Spatiotemporal patterns of Ae. aegypti in Cairns are complex, showing spatial autocorrelation and associations with temperature and rainfall. Sticky ovitraps should be placed no more than 1.2 km apart to ensure entomological coverage and efficient use of resources. Vector density maps provide evidence for the targeting of prevention and control activities. Further research is needed to explore the possibility of developing an early warning system of dengue based on meteorological and environmental factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Dengue fever (DF) is one of the most important emerging arboviral human diseases. Globally, DF incidence has increased by 30-fold over the last fifty years, and the geographic range of the virus and its vectors has expanded. The disease is now endemic in more than 120 countries in tropical and subtropical parts of the world. This study examines the spatiotemporal trends of DF transmission in the Asia-Pacific region over a 50-year period, and identified the disease's cluster areas. METHODOLOGY AND FINDINGS: The World Health Organization's DengueNet provided the annual number of DF cases in 16 countries in the Asia-Pacific region for the period 1955 to 2004. This fifty-year dataset was divided into five ten-year periods as the basis for the investigation of DF transmission trends. Space-time cluster analyses were conducted using scan statistics to detect the disease clusters. This study shows an increasing trend in the spatiotemporal distribution of DF in the Asia-Pacific region over the study period. Thailand, Vietnam, Laos, Singapore and Malaysia are identified as the most likely clusters (relative risk = 13.02) of DF transmission in this region in the period studied (1995 to 2004). The study also indicates that, for the most part, DF transmission has expanded southwards in the region. CONCLUSIONS: This information will lead to the improvement of DF prevention and control strategies in the Asia-Pacific region by prioritizing control efforts and directing them where they are most needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald’s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ross River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been an intense debate about climatic impacts on the transmission of malaria. It is vitally important to accurately project future impacts of climate change on malaria to support effective policy–making and intervention activity concerning malaria control and prevention. This paper critically reviewed the published literature and examined both key findings and methodological issues in projecting future impacts of climate change on malaria transmission. A literature search was conducted using the electronic databases MEDLINE, Web of Science and PubMed. The projected impacts of climate change on malaria transmission were spatially heterogeneous and somewhat inconsistent. The variation in results may be explained by the interaction of climatic factors and malaria transmission cycles, variations in projection frameworks and uncertainties of future socioecological (including climate) changes. Current knowledge gaps are identified, future research directions are proposed and public health implications are assessed. Improving the understanding of the dynamic effects of climate on malaria transmission cycles, the advancement of modelling techniques and the incorporation of uncertainties in future socioecological changes are critical factors for projecting the impact of climate change on malaria transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis advances the understanding of the impact of stigma on property values. A case study in Wellington, New Zealand, enabled hedonic modelling and an empirical analysis to determine the impact of the stigma from the high voltage transmission line structure and how long the stigma remained after removal. The results reveal a substantial difference between the discount applied to individual properties while the structure is in place, as compared to the overall increase in neighbourhood value once the structure, which created the stigma, is removed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Conclusion Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria has been eliminated from over 40 countries with an additional 39 currently planning for, or committed to, elimination. Information on the likely impact of available interventions, and the required time, is urgently needed to help plan resource allocation. Mathematical modelling has been used to investigate the impact of various interventions; the strength of the conclusions is boosted when several models with differing formulation produce similar data. Here we predict by using an individual-based stochastic simulation model of seasonal Plasmodium falciparum transmission that transmission can be interrupted and parasite reintroductions controlled in villages of 1,000 individuals where the entomological inoculation rate is <7 infectious bites per person per year using chemotherapy and bed net strategies. Above this transmission intensity bed nets and symptomatic treatment alone were not sufficient to interrupt transmission and control the importation of malaria for at least 150 days. Our model results suggest that 1) stochastic events impact the likelihood of successfully interrupting transmission with large variability in the times required, 2) the relative reduction in morbidity caused by the interventions were age-group specific, changing over time, and 3) the post-intervention changes in morbidity were larger than the corresponding impact on transmission. These results generally agree with the conclusions from previously published models. However the model also predicted changes in parasite population structure as a result of improved treatment of symptomatic individuals; the survival probability of introduced parasites reduced leading to an increase in the prevalence of sub-patent infections in semi-immune individuals. This novel finding requires further investigation in the field because, if confirmed, such a change would have a negative impact on attempts to eliminate the disease from areas of moderate transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barmah Forest virus (BFV) disease is the second most common mosquito-borne disease in Australia but few data are available on the risk factors. We assessed the impact of spatial climatic, socioeconomic and ecological factors on the transmission of BFV disease in Queensland, Australia, using spatial regression. All our analyses indicate that spatial lag models provide a superior fit to the data compared to spatial error and ordinary least square models. The residuals of the spatial lag models were found to be uncorrelated, indicating that the models adequately account for spatial and temporal autocorrelation. Our results revealed that minimum temperature, distance from coast and low tide were negatively and rainfall was positively associated with BFV disease in coastal areas, whereas minimum temperature and high tide were negatively and rainfall was positively associated with BFV disease (all P-value.