947 resultados para Transmission Line Method
Resumo:
This work has as main objective to study the application of microstrip antennas with patch and use of superconducting arrays of planar and linear phase. Was presented a study of the main theories that explain clearly the superconductivity. The BCS theory, Equations of London and the Two Fluid Model are theories that supported the implementation of the superconducting microstrip antennas. Arrangements phase was analyzed in linear and planar configuration of its antennas are reported factors such arrays to settings and criteria of phase and the spacing between the elements that make the arrayst was reviewed in order to minimize losses due to secondary lobes. The antenna used has a rectangular patch Sn5InCa2Ba4Cu10Oy the superconducting material was analyzed by the method of Transverse Transmission Line (TTL) applied in the field of Fourier transform (FTD). The TTL is a full-wave method, which has committed to obtaining the electromagnetic fields in terms of cross-cutting components of the structure. The inclusion of superconducting patch is made using the boundary condition, complex resistive. Are obtained when the resonant frequency depending on the parameters of the antenna, radiation pattern of E-Plan and H-Plan for the M-phase arrangements of antennas in the linear and planar configurations for different values of phase and spacing between the elements.
Resumo:
This work presents a theoretical analysis and numerical and experimental results of the scattering characteristics of frequency selective surfaces, using elements of type patch perfectly conductor. The structures are composed of two frequency selective surfaces on isotropic dielectric substrates cascaded, separated by a layer of air. The analysis is performed using the method of equivalent transmission line in combination with the Galerkin method, to determine the transmission and reflection characteristics of the structures analyzed. Specifically, the analysis uses the impedance method, which models the structure by an equivalent circuit, and applies the theory of transmission lines to determine the dyadic Green's function for the cascade structure. This function relates the incident field and surface current densities. These fields are determined algebraically by means of potential incidents and the imposition of the continuity of the fields in the dielectric interfaces. The Galerkin method is applied to the numerical determination of the unknown weight coefficients and hence the unknown densities of surface currents, which are expanded in terms of known basis functions multiplied by these weight coefficients. From the determination of these functions, it becomes possible to obtain numerical scattered fields at the top and bottom of the structures and characteristics of transmission and reflection of these structures. At work, we present numerical and experimental results for the characteristics of transmission and reflection. Comparisons were made with other results presented in literature, and it was observed a good agreement in the cases presented suggestions continuity of the work are presented
Resumo:
Eigenvector and eigenvalue analyses are carried out for double three-phase transmission lines, studying the application of a constant and real phase-mode transformation matrix and the errors of this application to mode line models. Employing some line transposition types, exact results are obtained with a single real transformation matrix based on Clarke's matrix and line geometrical characteristics. It is shown that the proposed technique leads to insignificant errors when a nontransposed case is considered. For both cases, transposed and nontransposed, the access to the electrical values (voltage and current, for example) is provided through a simple matrix multiplication without convolution methods. Using this facility, an interesting model for transmission line analysis is obtained even though the nontransposed case errors are not eliminated. The main advantages of the model are related to the transformation matrix: single, real, frequency independent, and identical for voltage and current.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O método de fluxo de carga convencional é considerado inadequado para se obter o ponto de máximo carregamento (PMC) de sistemas de potência, devido à singularidade da matriz Jacobiana neste ponto. Os métodos da continuação são ferramentas eficientes para a solução deste tipo de problema, visto que técnicas de parametrização podem ser utilizadas para evitar a singularidade da matriz Jacobiana. Neste trabalho, novas opções para a etapa de parametrização do método da continuação são apresentadas. Mostra-se que variáveis com claro significado físico podem ser utilizadas na etapa de parametrização. As seguintes variáveis foram testadas: perda total de potência ativa e reativa, potência ativa e reativa na barra de referência, potência reativa das barras de geração, e as perdas de potência ativa e reativa nas linhas de transmissão (LT). Além de facilitar a implementação computacional do método de continuação, as técnicas de parametrização apresentadas simplificam a definição matemática e o entendimento do método por parte de engenheiros de potência, visto que os métodos de continuação existentes na literatura sempre utilizam técnicas de parametrização complexas, e de interpretação puramente geométrica. Resultados obtidos com a nova metodologia para os sistemas testes do IEEE (14, 30, 57 e 118 barras) mostram que as características de convergência do método de fluxo de carga convencional são melhoradas na região do PMC. Além disso, durante o traçado das curvas PV, as diversas técnicas de parametrização podem ser comutadas entre si possibilitando o cálculo de todos os pontos da curva com um número reduzido de iterações. Diversos testes são realizados para proporcionar a comparação do desempenho dos esquemas de parametrização propostos.
Resumo:
This paper shows the insertion of corona effect in a transmission line model based on lumped elements. The development is performed considering a frequency-dependent line representation by cascade of pi sections and state equations. Hence, the detailed profile of currents and voltages along the line, described from a non-homogeneous system of differential equations, can be obtained directly in time domain applying numerical or analytic solution integration methods. The corona discharge model is also based on lumped elements and is implemented from the well-know Skilling-Umoto Model.
Resumo:
This article analyzes the electrical parameters of a 3-phase transmission line using a 280-m-high steel tower that has been proposed for the Amazon transmission system in Brazil. The height of the line conductors and the distance between them are intrinsically related to the longitudinal and transverse parameters of the line. Hence, an accurate study is carried out in order to show the electrical variations between a transmission line using the new technology and a conventional 3-phase 440-kV line, considering a wide range of frequencies and variable soil resistivity. First, a brief review of the fundamental theory of line parameters is presented. In addition, by using a digital line model, simulations are carried out in the time domain to analyze possible and critical over-voltage transients on the proposed line representation.
Resumo:
This paper describes an alternative procedure to obtain an equivalent conductor from a bundled conductor, taking into account the distribution of the current in subcondutors of the bundle. Firstly, it is introduced a brief background about the concept of Geometric Mean Radius (GMR) and how this methodology is applied to define an equivalent conductor and its electric parameters. Emphasizing that the classical procedure, using GMR, is limited to premise which the current is equally distributed through subconductors. Afterwards, it is described the development of proposed method and applications for an equivalent conductor obtained from a conventional transmission line bundled conductor and from an equivalent conductor based on a bundle with compressed SF(6) insulation system, where the current is unequally distributed through subconductors.
Resumo:
Studies on patterns of habitat use by mammals are necessary for understanding the mechanisms involved in their distribution and abundance. In this study, we used the spool-and-line method to investigate habitat utilization by two sigmodontine rodents from Brazilian Cerrado, Necromys lasiurus and Oryzomys scotti. We conducted the study in a Cerrado area in central Brazil (15 degrees 56'S and e 47 degrees 56'W) where the animals were caught in an area of 7.68 ha of Cerrado sensu stricto. Captured individuals were marked, equipped with a spool-and-Line device, and released at the same capture point. The next day we followed the thread to record their daily movements and find their nests. To investigate microhabitat selection we compared habitat characteristics along traits of each studied species with general habitat characteristics of the study area. Although the mean 24-h distance was greater for N. lasiurus (mean +/- SE: 41.9 +/- 42.2 m, N=3) than for O. scotti (28.7 +/- 14.2 m, N=6) this difference was not significant (Mann-Whitney test, U=26, P>0.6). We detected significant differences among observed microhabitats variables of both species and available microhabitat characteristics as determined by discriminant analysis (Wilks's lambda F=3.001; df=14, 116; P<0.001). Both species were associated to microhabitat characteristics whose values differed markedly from the overall available habitat. Along the first canonical discriminant function of the DFA both them were associated with greater grass height than the mean height available and along the second axis N. lasiurus selected areas with higher fruit availability and more shelters than those selected by 0. scotti. For stronger inferences regarding differential patterns of habitat utilization by Cerrado rodents we suggest the simultaneous use of both spool-and-line and standard trapping methods. (c) 2005 Deutsche Geseltschaft fur Saugetierkunde. Published by Elsevier GmbH. ALL rights reserved.
Resumo:
The objective of this paper is to show an alternative methodology to estimate per unit length parameters of a line segment of a transmission line. With this methodology the line segment parameters can be obtained starting from the phase currents and -voltages in receiving and sending end of the line segment. If the line segment is represented as being one or more pi circuits whose frequency dependent parameters are considered lumped, its impedance and admittance can be easily expressed as functions of the currents and voltages at the sending and receiving end. Because we are supposing that voltages and currents at the sending and receiving end of the tine segment (in frequency domain) are known, it is possible to obtains its impedance and admittance and consequently its per unit length longitudinal and transversal parameters. The procedure will be applied to estimate the longitudinal and transversal parameters of a small segment of a single-phase line that is already built.
Resumo:
Indices that report how much a contingency is stable or unstable in an electrical power system have been the object of several studies in the last decades. In some approaches, indices are obtained from time-domain simulation; others explore the calculation of the stability margin from the so-called direct methods, or even by neural networks.The goal is always to obtain a fast and reliable way of analysing large disturbance that might occur on the power systems. A fast classification in stable and unstable, as a function of transient stability is crucial for a dynamic security analysis. All good propositions as how to analyse contingencies must present some important features: classification of contingencies; precision and reliability; and efficiency computation. Indices obtained from time-domain simulations have been used to classify the contingencies as stable or unstable. These indices are based on the concepts of coherence, transient energy conversion between kinetic energy and potential energy, and three dot products of state variable. The classification of the contingencies using the indices individually is not reliable, since the performance of these indices varies with each simulated condition. However, collapsing these indices into a single one can improve the analysis significantly. In this paper, it is presented the results of an approach to filter the contingencies, by a simple classification of them into stable, unstable or marginal. This classification is performed from the composite indices obtained from step by step simulation with a time period of the clearing time plus 0.5 second. The contingencies originally classified as stable or unstable do not require this extra simulation. The methodology requires an initial effort to obtain the values of the intervals for classification, and the weights. This is performed once for each power system and can be used in different operating conditions and for different contingencies. No misplaced classification o- - ccurred in any of the tests, i.e., we detected no stable case classified as unstable or otherwise. The methodology is thus well fitted for it allows for a rapid conclusion about the stability of th system, for the majority of the contingencies (Stable or Unstable Cases). The tests, results and discussions are presented using two power systems: (1) the IEEE17 system, composed of 17 generators, 162 buses and 284 transmission lines; and (2) a South Brazilian system configuration, with 10 generators, 45 buses and 71 lines.
Resumo:
The paper explains the conceptual design of instrumentation that measures electric quantities defined in the trial-use Std. 1459-2000. It is shown how the Instantaneous-Space-Phasor (ISP) approach, based on α, β, 0 components, can be used to monitor electric energy flow, evaluate the utilization of transmission line and quantify the level of harmonic pollution injected by nonlinear loads.
Resumo:
In transmission line transient analyses, a single real transformation matrix can obtain exact modes when the analyzed line is transposed. For non-transposed lines, the results are not exact. In this paper, non-symmetrical and non transposed three-phase line samples are analyzed with a single real transformation matrix application (Clarke's matrix). Some interesting characteristics of this matrix application are: single, real, frequency independent, line parameter independent, identical for voltage and current determination. With Clarke's matrix use, mathematical simplifications are obtained and the developed model can be applied directly in programs based on time domain. This model works without convolution procedures to deal with phase-mode transformation. In EMTP programs, Clarke's matrix can be represented by ideal transformers and the frequency dependent line parameters can be represented by modified-circuits. With these representations, the electrical values at any line point can be accessed for phase domain or mode domain using the Clarke matrix or its inverse matrix. For symmetrical and non-transposed lines, the model originates quite small errors. In addition, the application of the proposed model to the non-symmetrical and non-transposed three phase transmission lines is investigated. ©2005 IEEE.
Resumo:
The paper addresses the issue of apportioning of the cost of transmission losses to generators and demands in a multimarket framework. Line flows are unbundled using equivalent bilateral exchanges on a DC-network model and allocated to generators and demands. Losses are then calculated based on unbundled flows and straightforwardly apportioned to generators and demands. The proposed technique is particularly useful in a multimarket framework, where all markets have a common grid operator with complete knowledge of all network data, as is the case of the Brazilian electric-energy system. The methodology proposed is illustrated using the IEEE Reliability Test System and compared numerically with an alternative technique. Appropriate conclusions are drawn. © The Institution of Engineering and Technology 2006.
Resumo:
The objective of this paper is to show an alternative methodology to estimate per unit length parameters of a line segment of a transmission line. With this methodology the line segment parameters can be obtained starting from the phase currents and voltages in receiving and sending end of the line segment. If the line segment is represented as being one or more π circuits whose frequency dependent parameters are considered lumped, its impedance and admittance can be easily expressed as functions of the currents and voltages at the sending and receiving end. Because we are supposing that voltages and currents at the sending and receiving end of the line segment (in frequency domain) are known, it is possible to obtains its impedance and admittance and consequently its per unit length longitudinal and transversal parameters. The procedure will be applied to estimate the longitudinal and transversal parameters of a small segment of a single-phase line that is already built. © 2006 IEEE.