978 resultados para Tl
Resumo:
A tanulmány azt vizsgálja, hogy az Egyesült Királyság milyen lehetőségek közül választhat, ha kilépne az Európai Unióból. David Cameron 2013. elején kilátásba helyezte, hogy újraválasztása esetén 2017-ben népszavazást ír ki országa EU-tagságáról. A téma igen aktuális, mégis az tapasztalható, hogy legtöbbször csak az EU-tagság hátrányáról esik szó, nem pedig a kilépés utáni konkrét következményekről. Az EU-tagság alternatíváinak elemzése ezt a hiányosságot próbálja meg pótolni. Két nagy csoportra lehet bontani ezeket:egyrészt a létező (norvég, svájci, török modell), másrészt a nem létező, csak elképzelt alternatívákra (AEA, NAFTA, EU+1, Commonwealth, WTO). A tanulmány végére kiderül, hogy a lehetőségek számos olyan problémával rendelkeznek, amelyeket EU-tagként nem lehet érzékelni. Így az is előfordulhat, hogy a kevésbé népszerű EU-tagság is előnyösebb lehet, mint a kilépés utáni alternatívák. Az elemzés mindenki számára hasznos lehet, akik az EU-n kívüli élet dilemmáit szeretnék jobban megérteni.
Resumo:
Produced water is a major problem associated with the crude oil extraction activity. The monitoring of the levels of metals in the waste is constant and requires the use of sensitive analytical techniques. However, the determination of trace elements can often require a pre-concentration step. The objective of this study was to develop a simple and rapid analytical method for the extraction and pre-concentration based on extraction phenomenon cloud point for the determination of Cd, Pb and Tl in produced water samples by spectrometry of high resolution Absorption source continues and atomization graphite furnace. The Box Behnken design was used to obtain the optimal condition of extraction of analytes. The factors were evaluated: concentration of complexing agent (o,o-dietilditilfosfato ammonium, DDTP), the concentration of hydrochloric acid and concentration of surfactant (Triton X -114). The optimal condition obtained through extraction was: 0,6% m v-1 DDTP, HCl 0,3 mol L-1 and 0,2% m v-1 of Triton X - 114 for Pb; 0,7% m v-1 DDTP, HCl 0,8 mol L-1 and 0,2% m v-1 Triton X-114 for Cd. For Tl was evidenced that best extraction condition occurs with no DDTP, the extraction conditions were HCl 1,0 mol L-1 e 1,0% m v-1 de Triton X - 114. The limits of detection for the proposed method were 0,005 µg L-1 , 0,03 µg L-1 and 0,09 µg L-1 to Cd, Pb and Tl, Respectively. Enrichment factors Were greater than 10 times. The method was applied to the water produced in the Potiguar basin, and addition and recovery tests were performed, and values were between 81% and 120%. The precision was expressed with relative standard deviation (RSD) is less than 5%
Resumo:
The determination and monitoring of metallic contaminants in water is a task that must be continuous, leading to the importance of the development, modification and optimization of analytical methodologies capab le of determining the various metal contaminants in natural environments, because, in many cases, the ava ilable instrumentation does not provide enough sensibility for the determination of trace values . In this study, a method of extraction and pre- concentration using a microemulsion system with in the Winsor II equilibrium was tested and optimized for the determination of Co, Cd, P b, Tl, Cu and Ni through the technique of high- resolution atomic absorption spectrometry using a continuum source (HR-CS AAS). The optimization of the temperature program for the graphite furnace (HR-CS AAS GF) was performed through the pyrolysis and atomization curves for the analytes Cd, Pb, Co and Tl with and without the use of different chemical modifiers. Cu and Ni we re analyzed by flame atomization (HR-CS F AAS) after pre-concentr ation, having the sample introduction system optimized for the realization of discrete sampling. Salinity and pH levels were also analyzed as influencing factors in the efficiency of the extraction. As final numbers, 6 g L -1 of Na (as NaCl) and 1% of HNO 3 (v/v) were defined. For the determination of the optimum extraction point, a centroid-simplex statistical plan was a pplied, having chosen as the optimum points of extraction for all of the analytes, the follo wing proportions: 70% aqueous phase, 10% oil phase and 20% co-surfactant/surfactant (C/S = 4). After extraction, the metals were determined and the merit figures obtained for the proposed method were: LOD 0,09, 0,01, 0,06, 0,05, 0,6 and 1,5 μg L -1 for Pb, Cd, Tl, Co, Cu and Ni, re spectively. Line ar ranges of ,1- 2,0 μg L -1 for Pb, 0,01-2,0 μg L -1 for Cd, 1,0 - 20 μg L -1 for Tl, 0,1-5,0 μg L -1 for Co, 2-200 μg L -1 and for Cu e Ni 5-200 μg L -1 were obtained. The enrichment factors obtained ranged between 6 and 19. Recovery testing with the certified sample show ed recovery values (n = 3, certified values) after extraction of 105 and 101, 100 and 104% for Pb, Cd, Cu and Ni respectively. Samples of sweet waters of lake Jiqui, saline water from Potengi river and water produced from the oil industry (PETROBRAS) were spiked and the recovery (n = 3) for the analytes were between 80 and 112% confirming th at the proposed method can be used in the extraction. The proposed method enabled the sepa ration of metals from complex matrices, and with good pre-concentration factor, consistent with the MPV (allowed limits) compared to CONAMA Resolution No. 357/2005 which regulat es the quality of fresh surface water, brackish and saline water in Brazil.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The primary objective of this experiment is to measure the cross-section of $\nu_{e}$ charged-current neutrino interactions on $^{127}$I. To measure this interaction, an array of twenty-four, 7.7 kg sodium iodide (NaI[Tl]) scintillating detectors will be deployed to the Spallation Neutron Source at Oak Ridge National Laboratory. The design of the detector array is presented here along with preliminary characterization and background measurements conducted at Duke University.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Nanostructured Alsub(2)Osub(3) - AlNd phospors: OSL and TL analyses and morphological investigations
Resumo:
2015
Resumo:
Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) that is activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. Cleavage of this receptor exposes a neoepitope, termed the tethered ligand (TL), which binds intramolecularly within the receptor to stimulate signal transduction via coupled G proteins. PAR2-mediated signal transduction is also experimentally stimulated by hexapeptides (agonist peptides; APs) that are homologous to the TL sequence. Due to the irreversible nature of PAR2 proteolysis, downstream signal transduction is tightly regulated. Following activation, PAR2 is rapidly uncoupled from downstream signalling by the post-translational modifications phosphorylation and ubiquination which facilitate interactions with â- arrestin. This scaffolding protein couples PAR2 to the internalisation machinery initiating its desensitisation and trafficking through the early and late endosomes followed by receptor degradation. PAR2 is widely expressed in mammalian tissues with key roles for this receptor in cardiovascular, respiratory, nervous and musculoskeletal systems. This receptor has also been linked to pathological states with aberrant expression and signalling noted in several cancers. In prostate cancer, PAR2 signalling induces migration and proliferation of tumour derived cell lines, while elevated receptor expression has been noted in malignant tissues. Importantly, a role for this receptor has also been suggested in prostate cancer bone metastasis as coexpression of PAR2 and a proteolytic activator has been demonstrated by immunohistochemical analysis. Based on these data, the primary focus of this project has been on two aspects of PAR2 biology. The first is characterisation of cellular mechanisms that regulate PAR2 signalling and trafficking. The second aspect is the role of this receptor in prostate cancer bone metastasis. In addition, to permit these studies, it was first necessary to evaluate the specificity of the commercially available anti-PAR2 antibodies SAM11, C17, N19 and H99. The evaluation of the four commercially available antibodies was assessed using four techniques: immunoprecipitation; Western blot analysis; immunofluorescence; and flow cytometry. These approaches demonstrated that three of the antibodies efficiently detect ectopically expressed PAR2 by each of these techniques. A significant finding from this study was that N19 was the only antibody able to specifically detect N-glycosylated endogenous PAR2 by Western blot analysis. This analysis was performed on lysates from prostate cancer derived cell lines and tissue derived from wildtype and PAR2 knockout mice. Importantly, further evaluation demonstrated that this antibody also efficiently detects endogenous PAR2 at the cell surface by flow cytometry. The anti-PAR2 antibody N19 was used to explore the in vitro role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Significantly, use of the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling experiments using two approaches which showed that PAR2 stably expressed by CHO cells is palmitoylated and that palmitoylation occurs on cysteine 361. Another key finding from this study is that palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ~9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. Importantly, this study also identified that palmitoylation of this receptor within the Golgi apparatus is required for efficient agonist-induced rab11amediated trafficking of PAR2 to the cell surface. Interestingly, palmitoylation is also required for receptor desensitization, as agonist-induced â-arrestin recruitment and receptor degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. Collectively, these data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor. This project also evaluated PAR2 residues involved in ligand docking. Although the extracellular loop (ECL)2 of PAR2 is known to be required for agonist-induced signal transduction, the binding pocket for receptor agonists remains to be determined. In silico homology modelling, based on a crystal structure for the prototypical GPCR rhodopsin, and ligand docking were performed to identify PAR2 transmembrane (TM) amino acids potentially involved in agonist binding. These methods identified 12 candidate residues that were mutated to examine the binding site of the PAR2 TL, revealed by trypsin cleavage, as well as of the soluble ligands 2f-LIGRLO-NH2 and GB110, which are both structurally based on the AP SLIGRLNH2. Ligand binding was evaluated from the impact of the mutated residues on PAR2-mediated calcium mobilisation. An important finding from these experiments was that mutation of residues Y156 and Y326 significantly reduced 2f-LIGRLO-NH2 and GB110 agonist activity. L307 was also important for GB110 activity. Intriguingly, mutation of PAR2 residues did not alter trypsin-induced signalling to the same extent as for the soluble agonists. The reason for this difference remains to be further examined by in silico and in vitro experimentation and, potentially, crystal structure studies. However, these findings identified the importance of TM domains in PAR2 ligand docking and will enhance the design of both PAR2 agonists and potentially agents to inhibit signalling (antagonists). The potential importance of PAR2 in prostate cancer bone metastasis was examined using a mouse model. In patients, prostate cancer bone metastases cause bone growth by disrupting bone homeostasis. In an attempt to mimic prostate cancer growth in bone, PAR2 responsive 22Rv1 prostate cancer cells, which form mixed osteoblastic and osteolytic lesions, were injected into the proximal aspect of mouse tibiae. A role for PAR2 was assessed by treating these mice with the recently developed PAR2 antagonist GB88. As controls, animals bearing intra-tibial tumours were also treated with vehicle (olive oil) or the prostate cancer chemotherapeutic docetaxel. The effect of these treatments on bone was examined radiographically and by micro-CT. Consistent with previous studies, 22Rv1 tumours caused osteoblastic periosteal spicule formation and concurrent osteolytic bone loss. Significantly, blockade of PAR2 signalling reduced the osteoblastic and osteolytic phenotype of 22Rv1 tumours in bone. No bone defects were detected in mice treated with docetaxel. These qualitative data will be followed in the future by quantitative micro-CT analysis as well as histology and histomorphometry analysis of already collected tissues. Nonetheless, these preliminary experiments highlight a potential role for PAR2 in prostate cancer growth in bone. In summary, in vitro studies have defined mechanisms regulating PAR2 activation, downstream signalling and trafficking and in vivo studies point to a potential role for this receptor in prostate cancer bone metastasis. The outcomes of this project are that a greater understanding of the biology of PAR2 may lead to the development of strategies to modulate the function of this receptor in disease.