858 resultados para Titanium casting
Resumo:
Formation of nanocrystalline TiN at low temperatures was demonstrated by combining Pulsed Laser Deposition (PLD) and ion implantation techniques. The Ti films of nominal thickness similar to 250 nm were deposited at a substrate temperature of 200 degrees C by ablating a high pure titanium target in UHV conditions using a nanosecond pulsed Nd:YAG laser operating at 1064 nm. These films were implanted with 100 keV N+ ions with fluence ranging from 1.0 x 10(16) ions/cm(2) to 1.0 x 10(17) ions/cm(2). The structural, compositional and morphological evolutions were tracked using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Atomic Force Microscopy (AFM), respectively. TEM analysis revealed that the as-deposited titanium film is an fcc phase. With increasing ion fluence, its structure becomes amorphous phase before precipitation of nanocrystalline fcc TiN phase. Compositional depth profiles obtained from SIMS have shown the extent of nitrogen concentration gradient in the implantation zone. Both as-deposited and ion implanted films showed much higher hardness as compared to the bulk titanium. AFM studies revealed a gradual increase in surface roughness leading to surface patterning with increase in ion fluence.
Resumo:
Reactive Pulsed Laser Deposition is a single step process wherein the ablated elemental metal reacts with a low pressure ambient gas to form a compound. We report here a Secondary Ion Mass Spectrometry based analytical methodology to conduct minimum number of experiments to arrive at optimal process parameters to obtain high quality TiN thin film. Quality of these films was confirmed by electron microscopic analysis. This methodology can be extended for optimization of other process parameters and materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The insertion of phenyl isocyanate into titanium isopropoxide leads to the formation of a dimeric complex [Ti(O ' Pr)(2)(mu-O ' Pr){C6H5N(O ' Pr)CO}](2) (1) which has been structurally characterized. Reaction of titanium isopropoxide with two and more than 2 equiv. of phenyl isocyanate is complicated by competitive, reversible insertion between the titanium carbamate and titanium isopropoxide. The ligand formed by insertion of phenyl isocyanate into the titanium carbamate has been structurally characterized in its protonated form C6H5N{C(O ' Pr)O}C(O)N(H)C6H5 (3aH). Insertion into the carbamate is kinetically favored whereas insertion into isopropoxide gives the thermodynamically favored product. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
This thesis comprises four intercomplementary parts that introduce new approaches to brittle reaction layers and mechanical compatibility of metalloceramic joints created when fusing dental ceramics to titanium. Several different methods including atomic layer deposition (ALD), sessile drop contact angle measurements, scanning acoustic microscopy (SAM), three-point bending (TPB, DIN 13 927 / ISO 9693), cross-section microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were employed. The first part investigates the effects of TiO2 layer structure and thickness on the joint strength of the titanium-metalloceramic system. Samples with all tested TiO2 thicknesses displayed good ceramics adhesion to Ti, and uniform TPB results. The fracture mode was independent of oxide layer thickness and structure. Cracking occurred deeper inside titanium, in the oxygen-rich Ti[O]x solid solution surface layer. During dental ceramics firing TiO2 layers dissociate and joints become brittle with increased dissolution of oxygen into metallic Ti and consequent reduction in the metal plasticity. To accomplish an ideal metalloceramic joint this needs to be resolved. The second part introduces photoinduced superhydrophilicity of TiO2. Test samples with ALD deposited anatase TiO2 films were produced. Samples were irradiated with UV light to induce superhydrophilicity of the surfaces through a cascade leading to increased amount of surface hydroxyl groups. Superhydrophilicity (contact angle ~0˚) was achieved within 2 minutes of UV radiation. Partial recovery of the contact angle was observed during the first 10 minutes after UV exposure. Total recovery was not observed within 24h storage. Photoinduced ultrahydrophilicity can be used to enhance wettability of titanium surfaces, an important factor in dental ceramics veneering processes. The third part addresses interlayers designed to restrain oxygen dissolution into Ti during dental ceramics fusing. The main requirements for an ideal interlayer material are proposed. Based on these criteria and systematic exclusion of possible interlayer materials silver (Ag) interlayers were chosen. TPB results were significantly better in when 5 μm Ag interlayers were used compared to only Al2O3-blasted samples. In samples with these Ag interlayers multiple cracks occurred inside dental ceramics, none inside Ti structure. Ag interlayers of 5 μm on Al2O3-blasted samples can be efficiently used to retard formation of the brittle oxygen-rich Ti[O]x layer, thus enhancing metalloceramic joint integrity. The most brittle component in metalloceramic joints with 5 μm Ag interlayers was bulk dental ceramics instead of Ti[O]x. The fourth part investigates the importance of mechanical interlocking. According to the results, the significance of mechanical interlocking achieved by conventional surface treatments can be questioned as long as the formation of the brittle layers (mainly oxygen-rich Ti[O]x) cannot be sufficiently controlled. In summary in contrast to former impressions of thick titanium oxide layers this thesis clearly demonstrates diffusion of oxygen from sintering atmosphere and SiO2 to Ti structures during dental ceramics firing and the following formation of brittle Ti[O]x solid solution as the most important factors predisposing joints between Ti and SiO2-based dental ceramics to low strength. This among other predisposing factors such as residual stresses created by the coefficient of thermal expansion mismatch between dental ceramics and Ti frameworks can be avoided with Ag interlayers.
Resumo:
Antipyrine complexes of TiO2+, ZrO2+, Zr4+, Th4+ and UO2+2 perchlorates with molecular formulae TiO(Apy)4(ClO4)2, ZrO(Apy)3(ClO4)2, Zr(Apy)6(ClO4)4, Th(Apy)7(ClO4)4 and UO2(Apy)5(ClO4)2 have been prepared and characterized. The complexes are stable in air at room temperature and decompose exothermally at ~3OO °C. The i.r. study indicates the bonding of the antipyrine to the metal ion through its carbonyl oxygen. The nature of the bonding of the perchlorate and the stereochemistry of the complexes are discussed in the light of infrared spectra, conductivity in solvents of different polarity, and molecular weight measurements. From the UO2+2 group frequencies, the force constant K and rU-o are found to be 6.29 × 105 dynes/ cm-1 and 1.74 Å, respectively.
Resumo:
Some physicochemical properties of peroxy titanium compounds are explained by assigning a strained triangular ring structure to the peroxy titanyl group, with a bent and reduced overlap of the O---O bonding orbitals. The stability of the peroxy group is found to depend on the stability of the other ligands. The decreasing order of stability of the peroxy group in the compounds is as: oxalato > meleato > malonato > sulphato > peroxide of titanium.
Resumo:
The method of preparation and physicochemical properties of peroxy titanium malonate, TiO2(OOC)2CH2·3H2O are given. The reasons for the poor complexing tendency of malonic acid are discussed. The nature of the bonds between titanium and the peroxy as well as malonate groups is assigned from spectrophotometric and infra-red absorption studies.
Resumo:
ORANGE red and amorphous peroxy-titanium complexes of oxalic, malonic and maleic acids1-3, when vacuum-dried, have co-ordinated water molecules firmly bonded to the central titanium atom as shown in formula (I). The peroxy-oxygen from these compounds is slowly lost even at room temperature because of the strained peroxy-group3,4. The compounds, when kept at 95°-100°C. for about three days, give deperoxygenated compounds of the type (II). However, a sample of peroxy-titanium oxalate sealed in a glass tube lost all its peroxy-oxygen in about four years and gave a white crystalline basic oxalate (II). The amorphous nature of the compounds may be due to random hydrogen bonding in the complexes. The crystallinity observed in one of the deperoxygenated titanyl oxalates may be due to the rearrangement of the molecules during ageing for more than four years. The infra-red absorption of these compounds was studied to find out the effect of co-ordination and hydrogen bonding on the infra-red bands of the free water.
Resumo:
The method of preparation and physicochemical properties of peroxy titanium malonate, TiO2(OOC)2CH2·3H2O are given. The reasons for the poor complexing tendency of malonic acid are discussed. The nature of the bonds between titanium and the peroxy as well as malonate groups is assigned from spectrophotometric and infra-red absorption studies.
Resumo:
ALTHOUGH titanium is determined colorimetrically in aqueous sulphuric acid medium in presence of excess of hydrogen peroxide, the nature of the colour-forming species is not known definitely. Schwarz1 suggested that the colour was due to the peroxo-disulphato titanate anion [O 2Ti(SO4)2]2-. On the other hand, Jahr2 and later Gastinger3 considered that the colour of the compound was due to the peroxy titanyl cation [TiO2 aq.] 2+, and suggested the following equilibrium in solution: Schaeppi and Treadwell4 attributed the colour bo O2TiSO4 or [O2Ti(SO4)2]2-, whereas Babko and Volkova5 represented the coloured complex ion as [Ti(H 2O2)]4+. Mori, Shibata, Kyuno and Ito 6 regarded the coloured species as [TiO2 aq.]2+ or [Ti(OH)2 (H2O)(H2O2)] 2+, assuming the co-ordination number of titanium to be four. Thus, a variety of constitutions has been proposed to explain the colour-forming species of the titanium complex, based on the investigations carried out in dilute sulphuric acid medium, but the complex has not been isolated so far.
Resumo:
The activation area and activation enthalpy are determined as a function of stress and temperature for alpha titanium. The results indicated that plastic flow below about 700°K occurs by a single thermally activated mechanism. Activation area determined by differential-stress creep tests falls in the range 80−8b2 and does not systematically depend on the impurity content. The total activation enthalpy derived from the temperature and strain-rate dependence of flow stress is 1.15 eV. The experimental data support a lattice hardening mechanism as controlling the low-temperature deformation in alpha titanium.
Resumo:
The reactivity of Grignard reagents towards imines in the presence of catalytic and stoichiometric amounts of titanium alkoxides is reported.Alkylation, reduction, and coupling of imines take place. Whereas reductive coupling is the major reaction in stoichiometric reactions, alkylation is favored in catalytic reactions. Mechanistic studies clearly indicate that intermediates involved in the two reactions are different. Catalytic reactions involve a metal alkyl complex. This has been confirmed by reactions of deuterium-labeled substrates and different alkylating agents. Under the stoichiometric conditions, however, titanium olefin complexes are formed through reductive elimination, probably through a multinuclear intermediate.
Resumo:
An electron-beam melting and centrifugal splat-quenching technique for the production of microflakes of Ti-6A1-4V (wt%) alloy quenched at an average cooling rate of about 105 K sec–1 is described. The effect of substrate angle on the shape, size, microstructure and average cooling rate of the flakes of major sieve fractions is discussed. Morphologies of particles of minor sieve fractions are dealt with briefly.