870 resultados para Tissues adipose
Resumo:
Tissue engineering is a multidisciplinary field with the potential to replace tissues lost as a result of trauma, cancer surgery, or organ dysfunction. The successful production, integration, and maintenance of any tissue-engineered product are a result of numerous molecular interactions inside and outside the cell. We consider the essential elements for successful tissue engineering to be a matrix scaffold, space, cells, and vasculature, each of which has a significant and distinct molecular underpinning (Fig. 1). Our approach capitalizes on these elements. Originally developed in the rat, our chamber model (Fig. 2) involves the placement of an arteriovenous loop (the vascular supply) in a polycarbonate chamber (protected space) with the addition of cells and an extracellular matrix such as Matrigel or endogenous fibrin (34, 153, 246, 247). This model has also been extended to the rabbit and pig (J. Dolderer, M. Findlay, W. Morrison, manuscript in preparation), and has been modified for the mouse to grow adipose tissue and islet cells (33, 114, 122) (Fig. 3)...
Resumo:
We initially described a rat chamber model with an inserted arteriovenous pedicle which spontaneously generates 3-dimensional vascularized connective tissue (Tanaka Y et al., Br J Plast Surg 2000; 53: 51-7). More recently we have developed a murine chamber model containing reconstituted basement membrane (Matrigel®) and FGF-2 that generates vascularized adipose tissue in vivo (Cronin K et al., Plast Reconstr Surg 2004; in press). We have extended this work to assess the cellular and matrix requirements for the Matrigel®- induced neo-adipogenesis. We found that chambers sealed to host fat were unable to grow new adipose tissue. In these chambers the Matrigel® became vascularized with maximal outgrowth of vessels extending to the periphery at 6 weeks. A small amount of adipose tissue was found adjacent to the vessels, most likely arising from periadventitial adipose tissue. In contrast, chambers open to interaction with endogenous adipose tissue showed abundant new fat, and partial exposure to adjacent adipose tissue clearly showed neo-adipogenesis only in this area. Addition of small amounts of free fat to the closed chamber containing Matrigel® was able to induce neo-adipogenesis. Addition of small pieces of human fat also caused neo-adipogenesis in immunocompromised (SCID) mice. Also, we found Matrigel® to induce adipogenesis of Lac-Z-tagged (Rosa-26) murine bone marrow-derived mesenchymal stem cells, and cells similar to these have been isolated from human adipose tissue. Given that Matrigel® is a mouse product and cannot be used in humans, we have started investigating alternative matrix scaffolds for adipogenesis such as the PDA-approved PLGA, collagen and purified components derived from Matrigel®, such as laminin-1. The optimal conditions for adipogenesis with these matrices are still being elucidated. In conclusion, we have demonstrated that a precursor cell source inside the chamber is essential for the generation of vascularized adipose tissue in vivo. This technique offers unique potential for the reconstruction of soft tissue defects and may enable the generation of site-specific tissue using the correct microenvironment.
Resumo:
Engineering adipogenic tissue in vivo requires the concomitant induction of angiogenesis to generate a stable long-term three-dimensional construct. Histiocon-ductive tissue engineering strategies have been used. The disadvantage of using biodegradable scaffolds is a delayed angiogenic induction resulting in ischemic necrosis of the central cell population in the scaffold. We evaluated an histioinductive approach for adipose tissue engineering by combining essential key components for adipogenic induction: (1) a precursor cell source; (2) a vascular pedicle; (3) a supportive matrix, and; (4) a chamber to preserve space for the new tissue to develop. We observed concomitant adipogenic and angiogenic induction after 6 weeks in three-dimensional adipose tissue constructs.
Resumo:
Two-photon fluorescence spectroscopy has been performed on rat skeletal muscles to investigate the effect of fixation processes on the micro-environments of the endogenous fluorophors in rat skeletal muscles. The two-photon fluorescence spectra measured for different fixation periods show a differential among those samples that were fixed in water, formalin and methanol, respectively. The results imply that two-photon fluorescence spectroscopy can be a potential technique for identification of healthy and malignant biological tissues.
Resumo:
Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.
Resumo:
In general, the biological activation of nephrocarcinogenic chlorinated hydrocarbons proceeds via conjugatiton with glutathione. It has mostly been assamed that the main site of initial conjugation is the liver, followed by a mandatory transfer of intermediates to the kidney. It was therefore of interest to study the enzyme activities of subgroups of glutathione transferases (GSTs) in renal cancers and the surrounding normal renal tissues of the same individuals (n = 21). For genotyping the individuals with respect to known polymorphic GST isozymes the following substrates with differential specificity were used: 1-chloro-2,4-dinitrobenzene for overall GST activity (except GST θ); 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole for GST α; 1,2-dichloro-4-nitro-benzene for GST μ; ethacrynic acid and 4-vinylpyridine for GST π; and methyl chloride for GST θ. In general, the normal tissues were able to metabolize the test substrates. A general decrease in individual GST enzyme activities was apparent in the course of cancerization, and in some (exceptional) cases individual activities, expressed in the normal renal tissue, were lost in the tumour tissue. The GST enzyme activities in tumours were independent of tumour stage, or the age and gender of the patients. There was little influence of known polymorphisms of GSTM1, GSTM3 and GSTP1 upon the activities towards the test substrates, whereas the influence of GSTT1 polymorphism on the activity towads methyl chloride was straightforward. In general, the present findings support the concept that the initial GST-dependent bioactivation step of nephrocarcinogenic chlorinated hydrocarbons may take place in the kidney itself. This should be a consideration in toxicokinetic modelling.
Resumo:
A new system has been developed to determine enzyme activities of glutathione transferase θ (GSTT1-1) based on radiometric product detection resulting from the enzymic reaction of methyl chloride with 35S-labelled glutathione. In principle, the method is universally applicable for determination of glutathione transferase activities towards a multiplicity of substrates. The method distinguishes between erythrocyte GSTT1-1 activities of human 'non-conjugators', 'low conjugators' and 'high conjugators'. Application to cytosol preparations of livers and kidneys of male and female Fischer 344 and B6C3F1 mice reveals differential GSTT1-1 activities in hepatic and renal tissues. These ought to be considered in species-specific modellings of organ toxicities of chlorinated hydrocarbons.
Resumo:
Objective It has been suggested that adiponectin regulates plasma free fatty acid (FFA) clearance by stimulating FFA uptake and/or oxidation in muscle. We aimed to determine changes in plasma adiponectin concentration and adiponectin receptor 1 and 2 mRNA expression in skeletal muscle during and after prolonged exercise under normal, fasting conditions (high FFA trial; HFA) and following pharmacological inhibition of adipose tissue lipolysis (low FFA trial; LFA). Furthermore, we aimed to detect and locate adiponectin in skeletal muscle tissue. Methods Ten subjects performed two exercise trials (120 min at 50% VO2max). Indirect calorimetry was used to determine total fat oxidation rate. Plasma samples were collected at rest, during exercise and during post-exercise recovery to determine adiponectin, FFA and glycerol concentrations. Muscle biopsies were taken to determine adiponectin protein and adiponectin receptor 1 and 2 mRNA expression and to localise intramyocellular adiponectin. Results Basal plasma adiponectin concentrations averaged 6.57±0.7 and 6.63±0.8 mg/l in the HFA and LFA trials respectively, and did not change significantly during or after exercise. In the LFA trial, plasma FFA concentrations and total fat oxidation rates were substantially reduced. However, plasma adiponectin and muscle adiponectin receptor 1 and 2 mRNA expression did not differ between trials. Immunohistochemical staining of muscle cross-sections showed the presence of adiponectin in the sarcolemma of individual muscle fibres and within the interfibrillar arterioles. Conclusion Plasma adiponectin concentrations and adiponectin receptor 1 and 2 mRNA expression in muscle are not acutely regulated by changes in adipose tissue lipolysis and/or plasma FFA concentrations. Adiponectin is abundantly expressed in muscle, and, for the first time, it has been shown to be present in/on the sarcolemma of individual muscle fibres.
Resumo:
The majority of stem cell therapies for corneal repair are based upon the use of progenitor cells isolated from corneal tissue, but a growing body of literature suggests a role for mesenchymal stromal cells (MSC) isolated from non-corneal tissues. While the mechanism of MSC action seems likely to involve their immuno-modulatory properties, claims have emerged of MSC transdifferentiation into corneal cells. Substantial differences in methodology and experimental outcomes, however, have prompted us to perform a systematic review of the published data. Key questions used in our analysis included; the choice of markers used to assess corneal cell phenotype, the techniques employed to detect these markers, adequate reporting of controls, and tracking of MSC when studied in vivo. Our search of the literature revealed 28 papers published since 2006, with half appearing since 2012. MSC cultures established from bone marrow and adipose tissue have been best studied (22 papers). Critically, only 11 studies employed appropriate markers of corneal cell phenotype, along with necessary controls. Ten out of these 11 papers, however, contained positive evidence of corneal cell marker expression by MSC. The clearest evidence is observed with respect to expression of markers for corneal stromal cells by MSC. In comparison, the evidence for MSC conversion into either corneal epithelial cells or corneal endothelial cells is often inconsistent or inconclusive. Our analysis clarifies this emerging body of literature and provides guidance for future studies of MSC differentiation within the cornea as well as other tissues.
Resumo:
Enhancing quality of food products and reducing volume of waste during mechanical operations of food industry requires a comprehensive knowledge of material response under loadings. While research has focused on mechanical response of food material, the volume of waste after harvesting and during processing stages is still considerably high in both developing and developed countries. This research aims to develop and evaluate a constitutive model of mechanical response of tough skinned vegetables under postharvest and processing operations. The model focuses on both tensile and compressive properties of pumpkin flesh and peel tissues where the behaviours of these tissues vary depending on various factors such as rheological response and cellular structure. Both elastic and plastic response of tissue were considered in the modelling process and finite elasticity combined with pseudo elasticity theory was applied to generate the model. The outcomes were then validated using the published results of experimental work on pumpkin flesh and peel under uniaxial tensile and compression. The constitutive coefficients for peel under tensile test was α = 25.66 and β = −18.48 Mpa and for flesh α = −5.29 and β = 5.27 Mpa. under compression the constitutive coefficients were α = 4.74 and β = −1.71 Mpa for peel and α = 0.76 and β = −1.86 Mpa for flesh samples. Constitutive curves predicted the values of force precisely and close to the experimental values. The curves were fit for whole stress versus strain curve as well as a section of curve up to bio yield point. The modelling outputs had presented good agreement with the empirical values and the constructive curves exhibited a very similar pattern to the experimental curves. The presented constitutive model can be applied next to other agricultural materials under loading in future.
Resumo:
The transcriptome response of Atlantic salmon (Salmo salar) displaying advanced stages of amoebic gill disease (AGD) was investigated. Naïve smolt were challenged with AGD for 19 days, at which time all fish were euthanized and their severity of infection quantified through histopathological scoring. Gene expression profiles were compared between heavily infected and naïve individuals using a 17 K Atlantic salmon cDNA microarray with real-time quantitative RT-PCR (qPCR) verification. Expression profiles were examined in the gill, anterior kidney, and liver. Twenty-seven transcripts were significantly differentially expressed within the gill; 20 of these transcripts were down-regulated in the AGD-affected individuals compared with naïve individuals. In contrast, only nine transcripts were significantly differentially expressed within the anterior kidney and five within the liver. Again the majority of these transcripts were down-regulated within the diseased individuals. A down-regulation of transcripts involved in apoptosis (procathepsin L, cathepsin H precursor, and cystatin B) was observed in AGD-affected Atlantic salmon. Four transcripts encoding genes with antioxidant properties also were down-regulated in AGD-affected gill tissue according to qPCR analysis. The most up-regulated transcript within the gill was an unknown expressed sequence tag (EST) whose expression was 218-fold (± SE 66) higher within the AGD affected gill tissue. Our results suggest that Atlantic salmon experiencing advanced stages of AGD demonstrate general down-regulation of gene expression, which is most pronounced within the gill. We propose that this general gene suppression is parasite-mediated, thus allowing the parasite to withstand or ameliorate the host response. © 2008 Springer Science+Business Media, LLC.
Resumo:
Background Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Results Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3′ untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. Conclusions This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity.
Resumo:
The primary aim of this multidisciplinary project was to develop a new generation of breast implants. Disrupting the currently prevailing paradigm of silicone implants which permanently introduce a foreign body into mastectomy patients, highly porous implants developed as part of this PhD project are biodegradable by the body and augment the growth of natural tissue. Our technology platform leverages computer-assisted-design which allows us to manufacture fully patient-specific implants based on a personalised medicine approach. Multiple animal studies conducted in this project have shown that the polymeric implant slowly degrades within the body harmlessly while the body's own tissue forms concurrently.
Resumo:
We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD)". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.
Resumo:
From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.