915 resultados para TiO2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 thin films were prepared by sol gel method. The structural investigations performed by means of X- ray diffraction (XRD) technique, Scanning electronic microscopy (SEM) showed the shape structure at T=600°C. The optical constants of the deposited film were obtained from the analysis of the experimental recorded transmittance spectral data over the wavelengths range 200-3000 nm. The values of some important parameters (refractive index n, dielectric constant ε ∞ and thickness d), and the third order optical nonlinear susceptibility χ(3) of TiO2 film are determined from these spectra. It has been found that the dispersion data obey the single oscillator relation of the Wemple-DiDomenico model, from which the dispersion parameters and high – frequency dielectric constant were determined. The estimation of the corresponding band gap Eg , χ (3) and ε ∞ are 2.57 eV, 0.021 × 10-10 esu and 5.20,respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of Ti02 in single and two··phase regions of ihe system ZrOrTi02 has heen measured lIsing solid state cells based on yttria··doped tho ria (YDT) as the solid electrolyte at 1373 K. The cells used can be represented as: Pt, Tio.07PtO.Y3 + Zrj.,Tix0 2 / YDT / Ti02 + Tio.07Pto.93, Pt Pt, Tio.07Pto.93 + ZrJ.xTix02 + ZrTi04 / YDT / Ti02+ Tio.07PtO.93, Pt In each cell the composition of Pt-Ti alloy was identical at hoth electrodes. The emf of the cell is therefore directly related to the activity of Ti02 in oxide phase or oxide phase mixture: aTiO~ :;: cxp (-4FE/RT). The activity coefficient of Ti02 in th~ zirconia-rich solid solution with monoclinic structure (CUl2 2" XTi02 2" 0) can be expressed as:In the zirconia-rich solid solution with tetragonal structure (0.085 2" X ri02 2" 0.03), the activity coefficient is given by:In YTi02 (± 0.012) = 2.354 (1-XTiO? )2 +0.064 The standard Gibbs energy of formation of ZrTi04 is -5650 (± 200) J/mol at 1373 K .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he standard Gibbs energy of formation of CaCu3Ti4O12 (CCTO) from CaTiO3, CuO and TiO2 has been determined as a function of temperature from 925 to 1350 K using a solid-state electrochemical cell with yttria-stabilized zirconia as the solid electrolyte. Combining this result with information in the literature on CaTiO3, the standard Gibbs energy of formation of CCTO from its component binary oxides, CaO, CuO and TiO2, has been obtained: View the MathML source (CaCu3Ti4O12)/J mol−1 (±600) = −125231 + 6.57 (T/K). The oxygen chemical potential corresponding to the reduction of CCTO to CaTiO3, TiO2 and Cu2O has been calculated from the electrochemical measurements as a function of temperature and compared on an Ellingham diagram with those for the reduction of CuO to Cu2O and Cu2O to Cu. The oxygen partial pressures corresponding to the reduction reactions at any chosen temperature can be read using the nomograms provided on either side of the diagram. The effect of the oxygen partial pressure on phase relations in the pseudo-ternary system CaO–CuO/Cu2O–TiO2 at 1273 K has been evaluated. The phase diagrams allow identification of secondary phases that may form during the synthesis of the CCTO under equilibrium conditions. The secondary phases may have a significant effect on the extrinsic component of the colossal dielectric response of CCTO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized 5-7 nm size, highly crystalline TiO2 which absorbs radiation in the visible region of solar spectrum. The material shows higher photocatalytic activity both in UV and visible region of the solar radiation compared to commercial Degussa P25 TiO2. Transition metal ion substitution for Ti4+ creates mid-gap, states which act as recombination centers for electron-hole induced by photons thus reducing photocatalytic activity. However, Pt, Pd and Cu ion substituted TiO2 are excellent CO oxidation and NO reduction catalysts at temperatures less than 100 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degradation of dimethoate under UV irradiation using TiO2/polymer films prepared by the layer-by-layer (LbL) method was investigated. The thin films were fabricated on glass slides and the surface morphology and roughness of the thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effect of lamp intensity, catalyst loading in the layers, number of bilayers, pH and initial dimethoate concentration on the degradation of dimethoate was systematically studied. The degradation was monitored using high performance liquid chromatography (HPLC) analysis and total organic carbon (TOC) measurements as a function of irradiation time, to see the change in concentration of dimethoate and mineralization, respectively. Complete degradation of dimethoate was achieved under TiO2 optimum loading of 4 g/L at an UV irradiation time of 180 min. Increase in the lamp intensity, catalyst loading and number of bilayers increased the rate of degradation. At a pH of 4.62, complete degradation of dimethoate was observed. The degradation efficiency decreased with increase in initial dimethoate concentration. The degradation byproducts were analyzed and confirmed by gas chromatography-mass spectra (GC-MS). Toxicity of the irradiated samples was measured using the luminescence of bacteria Vibrio fischeri after 30 min of incubation and the results showed more toxicity than the parent compound. Catalyst reusability studies revealed that the fabricated thin films could be repeatedly used for up to ten times without affecting the photocatalytic activity of the films. The findings of the present study are very useful for the treatment of wastewaters contaminated with pesticides. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prepared thin films composed of pure TiO2 or TiO2 with an Fe additive (at concentrations of 0.2-0.8 wt%) via a simple and cost effective sol gel process, and tested their antifungal properties (against Candida albicans (MTCC-1637), Candida tropicalis (MTCC-184), Candida parapsilosis (MTCC-2509), and Candida glabrata (MTCC-3019) and antibacterial properties (against Staphylococcus faecalis (NCIM-2604) Staphylococcus epidermidis (NCIM-2493), Staphylococcus aureus (NCIL-2122), and Bacillus subtilis (NCIM-2549)). The films were deposited on glass and Si substrates and subjected to annealing at 400 degrees C for 3 h in ambient air. The film structural and morphological properties were investigated by X-ray photoelectron spectroscopy profilometry and scanning electron microscopy, respectively. Antifungal and antibacterial tests were conducted using the drop test method. Among the species examined, Candida albicans (MTCC-1637), and Staphylococcus aureus (NCIL-2122) showed complete colony formation inhibition after exposure for 4 h for the TiO2 loaded with 0.8 wt% Fe thin films. These results indicate that increasing the Fe concentration increased the antimicrobial activity, with complete inhibition of colony formation after 4 h exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glasses of the composition 0.20 Bi2O3 - 0.30 TiO2 - 0.50 SrB4O7 and 0.30 Bi2O3 - 0.45 TiO2 - 0.25 SrB4O7 have been fabricated by conventional glass processing technique. These glasses have been characterized using X-ray powder diffraction (XRD), differential thermal analysis (DTA) and high resolution transmission electron microscopy (HRTEM). The frequency response of the dielectric constant and the loss tangent of these glasses has been studied. The formation of the crystalline bismuth titanate, Bi4Ti3O12 (BiT) phase in the heat treated samples has been confirmed by XRD and HRTEM studies. The measured ET Of the glass-ceramics are found to be in good agreement with those predicted by the logarithmic mixture rule. Optical second harmonic generation (SHG) at 1064 nm has been observed in the heat treated samples and is attributed to the formation of crystalline Bi4Ti3O12 (BiT) phase in the SrB4O7 (SBO) matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured TiO2 is one of the most commonly used materials in photocatalytic applications and photochemical solar cells. This article describes a method to synthesize nanoporous anatase TiO2 membranes directly on stainless steel (SS), an easily available substrate by anodization to form amorphous TiO2 and a subsequent heat treatment to convert it into anatase, the photoactive phase. To obtain adherent membranes with interfaces that are resistant to peeling, both anodization and heat treatment parameters need to be optimized to obtain a heterostructure that contains a Ti film between the TiO2 membrane and the substrate.