997 resultados para Thermal losses
Resumo:
The thermal analysis of euchroite shows two mass loss steps in the temperature range 100 to 105°C and 185 to 205°C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH).3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4.5H2O → arhbarite Cu2Mg(AsO4)(OH)3. Hot stage Raman spectroscopy inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm-1 assigned to the ν1 AsO43- symmetric stretching vibration and 801, 822 and 871 cm-1 assigned to the ν3 AsO43- (A1) antisymmetric stretching vibration. A distinct band shift is observed upon heating to 275 °C. At 275 °C the four Raman bands are resolved at 762, 810, 837 and 862 cm-1. Further heating results in the diminution of the intensity in the Raman spectra and this is attributed to sublimation of the arsenate mineral. Hot stage Raman spectroscopy is most useful technique for studying the thermal stability of minerals especially when only very small amounts of mineral are available.
Resumo:
Thermal analysis and differential thermal analysis offers a means of studying the desorption of acids such as stearic acid from clay surfaces. Both adsorption and chemisorption can be distinguished through the differences in the temperature of the mass losses. Increased adsorption is achievable by adsorbing onto a surfactant adsorbed montmorillonite. Stearic acid sublimes at 179 °C but when adsorbed upon montmorillonite sublimes at 207 and 248 °C. These mass loss steps are ascribed to the desorption of the stearic acid on the external surfaces of the organoclays and from the de-chemisorption from the surfactant held in the interlayer of the montmorillonite.
Resumo:
Bayer hydrotalcites prepared using the seawater neutralisation (SWN) process of Bayer liquors are characterised using X-ray diffraction and thermal analysis techniques. The Bayer hydrotalcites are synthesised at four different temperatures (0, 25, 55, 75 °C) to determine the effect on the thermal stability of the hydrotalcite structure, and to identify other precipitates that form at these temperatures. The interlayer distance increased with increasing synthesis temperature, up to 55 °C, and then decreased by 0.14 Å for Bayer hydrotalcites prepared at 75 °C. The three mineralogical phases identified in this investigation are; 1) Bayer hydrotalcite, 2), calcium carbonate species, and 3) hydromagnesite. The DTG curve can be separated into four decomposition steps; 1) the removal of adsorbed water and free interlayer water in hydrotalcite (30 – 230 °C), 2) the dehydroxylation of hydrotalcite and the decarbonation of hydrotalcite (250 – 400 °C), 3) the decarbonation of hydromagnesite (400 – 550 °C), and 4) the decarbonation of aragonite (550 – 650 °C).
Thermal analysis of synthetic reevesite and cobalt substituted reevesite (Ni,Co)6Fe2(OH)16(CO3)•4H2O
Resumo:
The mineral reevesite and the cobalt substituted reevesite have been synthesised. The d(003) spacings of the minerals ranged from 7.54 to 7.95 Å. The maximum d(003) value occurred at around Ni:Co 0.4:0.6. This maximum in interlayer distance is proposed to be due to a greater number of carbonate anions and water molecules intercalated into the structure. The stability of the reevesite and cobalt doped reevesite was determined by thermogravimetric analysis. The maximum temperature of the reevesite occurs for the unsubstituted reevesite and is around 220°C. The effect of cobalt substitution results in a decrease in thermal stability of the reevesites. Four thermal decomposition steps are observed and are attributed to dehydration, dehydroxylation and decarbonation, decomposition of the formed carbonate and oxygen loss at ~807 °C. A mechanism for the thermal decomposition of the reevesite and the cobalt substituted reevesite is proposed.
Resumo:
The hydrotalcite based upon manganese known as charmarite Mn4Al2(OH)12CO3•3H2O has been synthesised with different Mn/Al ratios from 4:1 to 2:1. Impurities of manganese oxide, rhodochrosite and bayerite at low concentrations were also produced during the synthesis. The thermal stability of charmarite was investigated using thermogravimetry. The manganese hydrotalcite decomposed in stages with mass loss steps at 211, 305 and 793°C. The product of the thermal decomposition was amorphous material mixed with manganese oxide. A comparison is made with the thermal decomposition of the Mg/Al hydrotalcite. It is concluded that the synthetic charmarite is slightly less stable than hydrotalcite.
Resumo:
Two kinds of coal-bearing kaolinite from China were analysed by X-ray diffraction (XRD), Thermogravimetric analysis-mass spectrometry (TG-MS), infrared emission spectroscopy. Thermal decomposition occurs in a series of steps attributed to (a) desorption of water at 68 °C for Datong coal bearing strata kaolinite and 56 °C for Xiaoxian with mass losses of 0.36 % and 0.51 % (b) decarbonization at 456 °C for Datong coal bearing strata kaolinite and 431 °C for Xiaoxian kaolinite, (c) dehydroxylation takes place in two steps at 589 and 633 °C for Datong coal bearing strata kaolinite and at 507 °C and 579 °C for Xiaoxian kaolinite. This mineral were further characterised by infrared emission spectroscopy (IES). Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm-1 are observed. At 650 °C all intensity in these bands is lost in harmony with the thermal analysis results. Characteristic functional groups from coal are observed at 1918, 1724 and 1459 cm-1. The intensity of these bands decrease by thermal treatment and is lost by 700 °C.
Resumo:
Insight into the unique structure of layered double hydroxides has been obtained using a combination of X-ray diffraction and thermal analysis. Indium containing hydrotalcites of formula Mg4In2(CO3)(OH)12•4H2O (2:1 In-LDH) through to Mg8In2(CO3)(OH)18•4H2O (4:1 In-LDH) with variation in the Mg:In ratio have been successfully synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 LDH to 8.15 Å for the 3:1 indium containing layered double hydroxide. Distinct mass loss steps attributed to dehydration, dehydroxylation and decarbonation are observed for the indium containing hydrotalcite. Dehydration occurs over the temperature range ambient to 205 °C. Dehydroxylation takes place in a series of steps over the 238 to 277 °C temperature range. Decarbonation occurs between 763 and 795 °C. The dehydroxylation and decarbonation steps depend upon the Mg:In ratio. The formation of indium containing hydrotalcites and their thermal activation provides a method for the synthesis of indium oxide based catalysts.
Resumo:
A major challenge of the 21st century will be to generate transportation fuels using feedstocks such as lignocellulosic waste materials as a substitute for existing fossil and nuclear fuels. The advantages of lignocellulosics as a feedstock material are that they are abundant, sustainable and carbon-neutral. To improve the economics of producing liquid transportation fuels from lignocellulosic biomass, the development of value-added products from lignin, a major component of lignocellulosics, is necessary. Lignins produced from black liquor through the fractionation of sugarcane bagasse with soda and organic solvents have been characterised by physical, chemical and thermal means. The soda lignin fractions have different physico-chemical and thermal properties from one another. Some of these properties have been compared to bagasse lignin extracted with aqueous ethanol.
Resumo:
In recent years, multilevel converters are becoming more popular and attractive than traditional converters in high voltage and high power applications. Multilevel converters are particularly suitable for harmonic reduction in high power applications where semiconductor devices are not able to operate at high switching frequencies or in high voltage applications where multilevel converters reduce the need to connect devices in series to achieve high switch voltage ratings. This thesis investigated two aspects of multilevel converters: structure and control. The first part of this thesis focuses on inductance between a DC supply and inverter components in order to minimise loop inductance, which causes overvoltages and stored energy losses during switching. Three dimensional finite element simulations and experimental tests have been carried out for all sections to verify theoretical developments. The major contributions of this section of the thesis are as follows: The use of a large area thin conductor sheet with a rectangular cross section separated by dielectric sheets (planar busbar) instead of circular cross section wires, contributes to a reduction of the stray inductance. A number of approximate equations exist for calculating the inductance of a rectangular conductor but an assumption was made that the current density was uniform throughout the conductors. This assumption is not valid for an inverter with a point injection of current. A mathematical analysis of a planar bus bar has been performed at low and high frequencies and the inductance and the resistance values between the two points of the planar busbar have been determined. A new physical structure for a voltage source inverter with symmetrical planar bus bar structure called Reduced Layer Planar Bus bar, is proposed in this thesis based on the current point injection theory. This new type of planar busbar minimises the variation in stray inductance for different switching states. The reduced layer planar busbar is a new innovation in planar busbars for high power inverters with minimum separation between busbars, optimum stray inductance and improved thermal performances. This type of the planar busbar is suitable for high power inverters, where the voltage source is supported by several capacitors in parallel in order to provide a low ripple DC voltage during operation. A two layer planar busbar with different materials has been analysed theoretically in order to determine the resistance of bus bars during switching. Increasing the resistance of the planar busbar can gain a damping ratio between stray inductance and capacitance and affects the performance of current loop during switching. The aim of this section is to increase the resistance of the planar bus bar at high frequencies (during switching) and without significantly increasing the planar busbar resistance at low frequency (50 Hz) using the skin effect. This contribution shows a novel structure of busbar suitable for high power applications where high resistance is required at switching times. In multilevel converters there are different loop inductances between busbars and power switches associated with different switching states. The aim of this research is to consider all combinations of the switching states for each multilevel converter topology and identify the loop inductance for each switching state. Results show that the physical layout of the busbars is very important for minimisation of the loop inductance at each switch state. Novel symmetrical busbar structures are proposed for multilevel converters with diode-clamp and flying-capacitor topologies which minimise the worst case in stray inductance for different switching states. Overshoot voltages and thermal problems are considered for each topology to optimise the planar busbar structure. In the second part of the thesis, closed loop current techniques have been investigated for single and three phase multilevel converters. The aims of this section are to investigate and propose suitable current controllers such as hysteresis and predictive techniques for multilevel converters with low harmonic distortion and switching losses. This section of the thesis can be classified into three parts as follows: An optimum space vector modulation technique for a three-phase voltage source inverter based on a minimum-loss strategy is proposed. One of the degrees of freedom for optimisation of the space vector modulation is the selection of the zero vectors in the switching sequence. This new method improves switching transitions per cycle for a given level of distortion as the zero vector does not alternate between each sector. The harmonic spectrum and weighted total harmonic distortion for these strategies are compared and results show up to 7% weighted total harmonic distortion improvement over the previous minimum-loss strategy. The concept of SVM technique is a very convenient representation of a set of three-phase voltages or currents used for current control techniques. A new hysteresis current control technique for a single-phase multilevel converter with flying-capacitor topology is developed. This technique is based on magnitude and time errors to optimise the level change of converter output voltage. This method also considers how to improve unbalanced voltages of capacitors using voltage vectors in order to minimise switching losses. Logic controls require handling a large number of switches and a Programmable Logic Device (PLD) is a natural implementation for state transition description. The simulation and experimental results describe and verify the current control technique for the converter. A novel predictive current control technique is proposed for a three-phase multilevel converter, which controls the capacitors' voltage and load current with minimum current ripple and switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase five-level inverter with a pure inductive load has been implemented to track three-phase reference currents using analogue circuits and a programmable logic device.
The application of bioimpedance analysis to monitor fluid losses and shifts associated with exercise
Resumo:
This paper describes a thorough thermal study on a fleet of DC traction motors which were found to suffer from overheating after 3 years of full operation. Overheating of these traction motors is attributed partly because of the higher than expected number of starts and stops between train terminals. Another probable cause of overheating is the design of the traction motor and/or its control strategy. According to the motor manufacturer, a current shunt is permanently connected across the motor field winding. Hence, some of the armature current is bypassed into the current shunt. The motor then runs above its rated speed in the field weakening mode. In this study, a finite difference model has been developed to simulate the temperature profile at different parts inside the traction motor. In order to validate the simulation result, an empty vehicle loaded with drums of water was also used to simulate the full pay-load of a light rail vehicle experimentally. The authors report that the simulation results agree reasonably well with experimental data, and it is likely that the armature of the traction motor will run cooler if its field shunt is disconnected at low speeds