990 resultados para Thermal Microscopy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed calcium and copper oxalates, with different proportions of Ca2+ and Cu2+ ions, were precipitated by dimethyl oxalate hydrolysis in homogeneous solution. The compounds were evaluated by means of scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetry (TG), and differential thermal analysis (DTA). The results suggested quantitative precipitation without solid solution formation. From the TG and DTA curves, it was possible to evaluate the Ca2+ ion proportion in the solid phase and to confirm the precipitation of the individual species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of both thermal treatment and laser irradiation on the structural and optical properties of films in the Sb 2 O 3 –Sb 2 S 3 system was investigated. The films were prepared by RF-sputtering using glass compositions as raw materials. Irreversible photodarkening effect was observed after exposure the films to a 458nm solid state laser. It is shown, for the first time, the use of holographic technique to measure “in situ”, simultaneously and independently, the phase and amplitude modulations in glassy films. The films were also photo-crystallized and analysed “in situ” using a laser coupled to a micro-Raman equipment. Results showed that Sb 2 S 3 crystalline phase was obtained after irradiation. The effect of thermal annealing on the structure of the films was carried out. Different from the result obtained by irradiation, thermal annealing induces the crystallization of the Sb 2 O 3 phase. Photo and thermal induced effects on films were studied using UV–Vis and Raman spectroscopy, atomic force microscopy (AFM), thermal analysis (DSC), X-ray diffraction, scanning electron microscopy (MEV) and energy-dispersive X-ray spectroscopy (EDX).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV-visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 mu m, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports evidence of the induced migration of Mn2+ ions in Cd(1-x)MnxS nanocrystals (NCs) by selecting a specific thermal treatment for each sample. The growth and characterization of these magnetic dots were investigated by atomic force microscopy (AFM), optical absorption (OA), and electronic paramagnetic resonance (EPR) techniques. The comparison of experimental and simulated EPR spectra confirms the incorporation of Mn2+ ions both in the core and at the dot surface regions. The thermal treatment of a magnetic sample, via selected annealing temperature and/or time, affects the fine and hyperfine interaction constants which modify the shape and the intensity of the EPR transition spectrum. The identification of these changes has allowed tracing the magnetic ion migration from core to surface regions of a dot as well as inferring the local density of the magnetic impurity ions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to assess the influence of Er:YAG laser pulse repetition rate on the thermal alterations occurring during laser ablation of sound and demineralized primary dentin. The morphological changes at the lased areas were examined by scanning electronic microscopy (SEM). To this end, 60 fragments of 30 sound primary molars were selected and randomly assigned to two groups (n = 30); namely A sound dentin (control) and B demineralized dentin. Each group was divided into three subgroups (n = 10) according to the employed laser frequencies: I4 Hz; II6 Hz, and III10 Hz. Specimens in group B were submitted to a pH-cycling regimen for 21 consecutive days. The irradiation was performed with a 250 mJ pulse energy in the noncontact and focused mode, in the presence of a fine water mist at 1.5 mL/min, for 15 s. The measured temperature was recorded by type K thermocouples adapted to the dentin wall relative to the pulp chamber. Three samples of each group were analyzed by SEM. The data were submitted to the nonparametric Kruskal-Wallis test and to qualitative SEM analysis. The results revealed that the temperature increase did not promote any damage to the dental structure. Data analysis demonstrated that in group A, there was a statistically significant difference among all the subgroups and the temperature rise was directly proportional to the increase in frequency. In group B, there was no difference between subgroup I and II in terms of temperature. The superficial dentin observed by SEM displayed irregularities that augmented with rising frequency, both in sound and demineralized tissues. In conclusion, temperature rise and morphological alterations are directly related to frequency increment in both demineralized and sound dentin. Microsc. Res. Tech., 2011. (c) 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the effects on micromorphology and temperature rise in human dentin using different frequencies of Er:YAG laser. Sixty human dentin fragments were randomly assigned into two groups (n = 30): carious or sound dentin. Both groups were divided into three subgroups (n = 10), according to the Er:YAG laser frequency used: 4, 6, or 10 Hz (energy: 200 mJ; irradiation distance: 12 mm; and irradiation time: 20 s). A thermocouple adapted to the tooth fragment recorded the initial temperature value (degrees C); then, the temperature was measured after the end of the irradiation (20 s). Morphological analysis was performed using images obtained with scanning electron microscope. There was no difference between the temperatures obtained with 4 and 6 Hz; the highest temperatures were achieved with 10 Hz. No difference was observed between carious and sound dentin. Morphological analyses revealed that all frequencies promoted irregular surface in sound dentin, being observed more selectively ablation especially in intertubular dentin with tubule protrusion. The caries dentin presented flat surface for all frequencies used. Both substrates revealed absence of any signs of thermal damage. It may be concluded that the parameters used in this study are capable to remove caries lesion, having acceptable limits of temperature rise and no significant morphological alterations on dentin surface. Microsc. Res. Tech. 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to characterize emulsion systems (ES) containing nonionic ethoxylated surfactants by using rheological, microscopic, and thermogravimetric assays. Three formulations were developed: ES-1: 8.0% (w/w) oleth-20; ES-2: 4.0% (w/w) oleth-20/4.0% (w/w) steareth-21; and ES-3: 8.0% (w/w) steareth-21. The systems showed typical non-Newtonian pseudo-plastic behavior. The presence of a lamellar gel phase was observed for all systems, with ES-2 being more pronounced. Through thermogravimetry, the profiles of the three systems were found to be similar, consisting of two main events, the first one being characterized by loss of water and, beyond 110 degrees C, by loss of the oil phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optoelectronic properties of InAs/GaAs quantum dots can be tuned by rapid thermal annealing. In this study, the morphology change of InAs/GaAs quantum dots layers induced by rapid thermal annealing was investigated at the atomic-scale by cross-sectional scanning tunneling microscopy. Finite elements calculations that model the outward relaxation of the cleaved surface were used to determine the indium composition profile of the wetting layer and the quantum dots prior and post rapid thermal annealing. The results show that the wetting layer is broadened upon annealing. This broadening could be modeled by assuming a random walk of indium atoms. Furthermore, we show that the stronger strain gradient at the location of the quantum dots enhances the intermixing. Photoluminescence measurements show a blueshift and narrowing of the photoluminescence peak. Temperature dependent photoluminescence measurements show a lower activation energy for the annealed sample. These results are in agreement with the observed change in morphology. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770371]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durch steigende Energiekosten und erhöhte CO2 Emission ist die Forschung an thermoelektrischen (TE) Materialien in den Fokus gerückt. Die Eignung eines Materials für die Verwendung in einem TE Modul ist verknüpft mit der Gütezahl ZT und entspricht α2σTκ-1 (Seebeck Koeffizient α, Leitfähigkeit σ, Temperatur T und thermische Leitfähigkeit κ). Ohne den Leistungsfaktor α2σ zu verändern, soll ZT durch Senkung der thermischen Leitfähigkeit mittels Nanostrukturierung angehoben werden.rnBis heute sind die TE Eigenschaften von den makroskopischen halb-Heusler Materialen TiNiSn und Zr0.5Hf0.5NiSn ausgiebig erforscht worden. Mit Hilfe von dc Magnetron-Sputterdeposition wurden nun erstmals halbleitende TiNiSn und Zr0.5Hf0.5NiSn Schichten hergestellt. Auf MgO (100) Substraten sind stark texturierte polykristalline Schichten bei Substrattemperaturen von 450°C abgeschieden worden. Senkrecht zur Oberfläche haben sich Korngrößen von 55 nm feststellen lassen. Diese haben Halbwertsbreiten bei Rockingkurven von unter 1° aufgewiesen. Strukturanalysen sind mit Hilfe von Röntgenbeugungsexperimenten (XRD) durchgeführt worden. Durch Wachstumsraten von 1 nms 1 konnten in kürzester Zeit Filmdicken von mehr als einem µm hergestellt werden. TiNiSn zeigte den höchsten Leistungsfaktor von 0.4 mWK 2m 1 (550 K). Zusätzlich wurde bei Raumtemperatur mit Hilfe der differentiellen 3ω Methode eine thermische Leitfähigkeit von 2.8 Wm 1K 1 bestimmt. Es ist bekannt, dass die thermische Leitfähigkeit mit der Variation von Massen abnimmt. Weil zudem angenommen wird, dass sie durch Grenzflächenstreuung von Phononen ebenfalls reduziert wird, wurden Übergitter hergestellt. Dabei wurden TiNiSn und Zr0.5Hf0.5NiSn nacheinander abgeschieden. Die sehr hohe Kristallqualität der Übergitter mit ihren scharfen Grenzflächen konnte durch Satellitenpeaks und Transmissionsmikroskopie (STEM) nachgewiesen werden. Für ein Übergitter mit einer Periodizität von 21 nm (TiNiSn und Zr0.5Hf0.5NiSn jeweils 10.5 nm) ist bei einer Temperatur von 550 K ein Leistungsfaktor von 0.77 mWK 2m 1 nachgewiesen worden (α = 80 µVK 1; σ = 8.2 µΩm). Ein Übergitter mit der Periodizität von 8 nm hat senkrecht zu den Grenzflächen eine thermische Leitfähigkeit von 1 Wm 1K 1 aufgewiesen. Damit hat sich die Reduzierung der thermischen Leitfähigkeit durch die halb-Heusler Übergitter bestätigt. Durch die isoelektronischen Eigenschaften von Titan, Zirkonium und Hafnium wird angenommen, dass die elektrische Bandstruktur und damit der Leistungsfaktor senkrecht zu den Grenzflächen nur schwach beeinflusst wird.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STATEMENT OF PROBLEM: AuTi alloys with 1.6% to 1.7% (wt%) Ti provide sufficient bond strength to veneering ceramics, but the strength of entire metal-ceramic restorations fabricated from these alloys is not known. However, this information is important to assess the clinical performance of such materials. PURPOSE: This in vitro study evaluated the fracture strength and thermal shock resistance of metal-ceramic crowns with AuTi frameworks produced by milling or casting. MATERIAL AND METHODS: Frameworks of the alloy Au-1.7Ti-0.1Ir (wt%) (Esteticor Vision) were produced by milling or casting (test groups). A high-gold alloy (Esteticor Special) was used as the control. The frameworks were veneered with ceramic (VMK 95). Specimens (n=7) were loaded until fracture. Loads at failure (N) were recorded and the mean values statistically evaluated using 1-way analysis of variance and a post hoc Dunnett test (alpha=.05). To assess the crazing resistance of the veneering ceramic, 6 additional crowns of each group were subjected to a thermal shock test. Fractured surfaces were documented by scanning electron microscopy. Coefficients of thermal expansion of the materials used were measured (n=2) to assess the thermal compatibility between alloys and ceramic. RESULTS: The mean fracture strength of the crowns with machined AuTi frameworks (1294 +/- 236 N) was significantly lower (P=.012) than that of the cast AuTi frameworks (1680 +/- 150 N), but statistically not different than the high-gold alloy (1449 +/- 159 N). Bonding failure to the AuTi alloy predominantly occurred at the alloy-oxide interface. For the high-gold alloy, more ceramic residues were observed. In the thermal shock test, crowns with milled AuTi frameworks showed significantly higher thermal shock resistance compared to the other groups. The coefficients of thermal expansion (Esteticor Vision cast: 14.5 microm/m.K; Esteticor Vision milled: 14.3 microm/m.K; Esteticor Special cast: 13.7 microm/m.K) did not correlate with the results of the thermal shock test. CONCLUSION: The in vitro fracture strength of crowns with milled AuTi frameworks is lower than that obtained with cast AuTi frameworks, but comparable to those crowns produced with a high-gold alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tishomingo is a chemically and structurally unique iron with 32.5 wt.% Ni that contains 20% residual taenite and 80% martensite plates, which formed on cooling to between -75 and -200 °C, probably the lowest temperature recorded by any meteorite. Our studies using transmission (TEM) and scanning electron microscopy (SEM), X-ray microanalysis (AEM) and electron backscatter diffraction (EBSD) show that martensite plates in Tishomingo formed in a single crystal of taenite and decomposed during reheating forming 10-100 nm taenite particles with ∼50 wt.% Ni, kamacite with ∼4 wt.%Ni, along with martensite or taenite with 32 wt.% Ni. EBSD data and experimental constraints show that Tishomingo was reheated to 320-400 °C for about a year transforming some martensite to kamacite and to taenite particles and some martensite directly to taenite without composition change. Fizzy-textured intergrowths of troilite, kamacite with 2.7 wt.% Ni and 2.6 wt.% Co, and taenite with 56 wt.% Ni and 0.15 wt.% Co formed by localized shock melting. A single impact probably melted the sub-mm sulfides, formed stishovite, and reheated and decomposed the martensite plates. Tishomingo and its near-twin Willow Grove, which has 28 wt.% Ni, differ from IAB-related irons like Santa Catharina and San Cristobal that contain 25-36 wt.% Ni, as they are highly depleted in moderately volatile siderophiles and enriched in Ir and other refractory elements. Tishomingo and Willow Grove therefore resemble IVB irons but are chemically distinct. The absence of cloudy taenite in these two irons shows that they cooled through 250 °C abnormally fast at >0.01 °C/yr. Thus this grouplet, like the IVA and IVB irons, suffered an early impact that disrupted their parent body when it was still hot. Our noble gas data show that Tishomingo was excavated from its parent body about 100 to 200 Myr ago and exposed to cosmic rays as a meteoroid with a radius of ∼50-85 cm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the thermal behavior and mechanical properties of nanocomposites based on unsaturated polyester resin (UP) modified with poly(ɛ-caprolactone) (PCL) and reinforced with an organically modified clay (cloisite 30B). To optimize the dispersion of 30B and the mixing of PCL in the UP resin, two different methods were employed to prepare crosslinked UP–PCL-30B hybrid nanocomposites. Besides, two samples of poly(ɛ-caprolactone) of different molecular weight (PCL2: Mn = 2.103g.mol−1 and PCL50: Mn = 5.104g.mol−1) were used at several concentrations (4, 6, 10 wt%). The 30B concentration was 4 wt% in all the nanocomposites. The morphology of the samples was studied by scanning electron microscopy (SEM). The analysis of X-ray patterns reveals that intercalated structures have been found for all ternary nanocomposites, independently of the molecular weight, PCL concentration and the preparation method selected. A slight rise of the glass transition temperature, Tg, is observed in UP/PCL/4%30B ternary nanocomposites regarding to neat UP. The analysis of the tensile properties of the ternary (hybrid) systems indicates that UP/4%PCL2/4%30B nanocomposite improves the tensile strength and elongation at break respect to the neat UP while the Young modulus remains constant

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point mutants of three unrelated antifluorescein antibodies were constructed to obtain nine different single-chain Fv fragments, whose on-rates, off-rates, and equilibrium binding affinities were determined in solution. Additionally, activation energies for unbinding were estimated from the temperature dependence of the off-rate in solution. Loading rate-dependent unbinding forces were determined for single molecules by atomic force microscopy, which extrapolated at zero force to a value close to the off-rate measured in solution, without any indication for multiple transition states. The measured unbinding forces of all nine mutants correlated well with the off-rate in solution, but not with the temperature dependence of the reaction, indicating that the same transition state must be crossed in spontaneous and forced unbinding and that the unbinding path under load cannot be too different from the one at zero force. The distance of the transition state from the ground state along the unbinding pathway is directly proportional to the barrier height, regardless of the details of the binding site, which most likely reflects the elasticity of the protein in the unbinding process. Atomic force microscopy thus can be a valuable tool for the characterization of solution properties of protein-ligand systems at the single molecule level, predicting relative off-rates, potentially of great value for combinatorial chemistry and biology.