975 resultados para Tgf-beta Receptor
Resumo:
Orally administered antigens induce a state of immunologic hyporesponsiveness termed oral tolerance. Different mechanisms are involved in mediating oral tolerance depending on the dose fed. Low doses of antigen generate cytokine-secreting regulatory cells, whereas high doses induce anergy or deletion. We used mice transgenic for a T-cell receptor (TCR) derived from an encephalitogenic T-cell clone specific for the acetylated N-terminal peptide of myelin basic protein (MBP) Ac-1-11 plus I-Au to test whether a regulatory T cell could be generated from the same precursor cell as that of an encephalitogenic Th1 cell and whether the induction was dose dependent. The MBP TCR transgenic mice primarily have T cells of a precursor phenotype that produce interleukin 2 (IL-2) with little interferon gamma (IFN-gamma), IL-4, or transforming growth factor beta (TGF-beta). We fed transgenic animals a low-dose (1 mg x 5) or high-dose (25 mg x 1) regimen of mouse MBP and without further immunization spleen cells were tested for cytokine production. Low-dose feeding induced prominent secretion of IL-4, IL-10, and TGF-beta, whereas minimal secretion of these cytokines was observed with high-dose feeding. Little or no change was seen in proliferation or IL-2/IFN-gamma secretion in fed animals irrespective of the dose. To demonstrate in vivo functional activity of the cytokine-secreting cells generated by oral antigen, spleen cells from low-dose-fed animals were adoptively transferred into naive (PLJ x SJL)F1 mice that were then immunized for the development of experimental autoimmune encephalomyelitis (EAE). Marked suppression of EAE was observed when T cells were transferred from MBP-fed transgenic animals but not from animals that were not fed. In contrast to oral tolerization, s.c. immunization of transgenic animals with MBP in complete Freund's adjuvant induced IFN-gamma-secreting Th1 cells in vitro and experimental encephalomyelitis in vivo. Despite the large number of cells reactive to MBP in the transgenic animals, EAE was also suppressed by low-dose feeding of MBP prior to immunization. These results demonstrate that MBP-specific T cells can differentiate in vivo into encephalitogenic or regulatory T cells depending upon the context by which they are exposed to antigen.
Resumo:
Matrix accumulation in the renal tubulointerstitium is predictive of a progressive decline in renal function. Transforming growth factor-beta(1) (TGF-beta(1)) and, more recently, connective tissue growth factor (CTGF) are recognized to play key roles in mediating the fibrogenic response, independently of the primary renal insult. Further definition of the independent and interrelated effects of CTGF and TGF-beta(1) is critical for the development of effective antifibrotic strategies. CTGF (20 ng/ml) induced fibronectin and collagen IV secretion in primary cultures of human proximal tubule cells (PTC) and cortical fibroblasts (CF) compared with control values (P < 0.005 in all cases). This effect was inhibited by neutralizing antibodies to either TGF-beta or to the TGF-beta type II receptor (TbetaRII). TGF-beta(1) induced a greater increase in fibronectin and collagen IV secretion in both PTC (P < 0.01) and CF (P < 0.01) compared with that observed with CTGF alone. The combination of TGF-beta(1) and CTGF was additive in their effects on both PTC and CF fibronectin and collagen IV secretion. TGF-beta(1) (2 ng/ml) stimulated CTGF mRNA expression within 30 min, which was sustained for up to 24 h, with a consequent increase in CTGF protein (P < 0.05), whereas CTGF had no effect on TGF-beta(1) mRNA or protein expression. TGF-beta(1) (2 ng/ml) induced phosphorylated (p)Smad-2 within 15 min, which was sustained for up to 24 h. CTGF had a delayed effect on increasing pSmad-2 expression, which was evident at 24 h. In conclusion, this study has demonstrated the key dependence of the fibrogenic actions of CTGF on TGF-beta. It has further uniquely demonstrated that CTGF requires TGF-beta, signaling through the TbetaRII in both PTCs and CFs, to exert its fibrogenic response in this in vitro model.
Resumo:
Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor beta (TGF beta)-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF beta inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf beta 1 nail murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF beta type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced gamma H2AX radiation-induced foci; and increased radiosensitivity compared with TGF beta competent cells. We determined that loss of TGF beta signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF beta restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf beta 1, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF beta may be used to advantage in cancer therapy.
Resumo:
DO CARMO, E. C., T. FERNANDES, D. KOIKE, N. D. DA SILVA JR., K. C. MATTOS, K. T. ROSA, D. BARRETTI, S. F. S. MELO, R. B. WICHI, M. C. C. IRIGOYEN, and E. M. DE OLIVEIRA. Anabolic Steroid Associated to Physical Training Induces Deleterious Cardiac Effects. Med. Sci. Sports Exerc., Vol. 43, No. 10, pp. 1836-1848, 2011. Purpose: Cardiac aldosterone might be involved in the deleterious effects of nandrolone decanoate (ND) on the heart. Therefore, we investigated the involvement of cardiac aldosterone, by the pharmacological block of AT1 or mineralocorticoid receptors, on cardiac hypertrophy and fibrosis. Methods: Male Wistar rats were randomized into eight groups (n = 14 per group): Control (C), nandrolone decanoate (ND), trained (T), trained ND (TND), ND + losartan (ND + L), trained ND + losartan (TND + L), ND + spironolactone (ND + S), and trained ND + spironolactone (TND + S). ND (10 mg.kg(-1).wk(-1)) was administered during 10 wk of swimming training (five times per week). Losartan (20 mg.kg(-1).d(-1)) and spironolactone (10 mg.kg(-1).d(-1)) were administered in drinking water. Results: Cardiac hypertrophy was increased 10% by using ND and 17% by ND plus training (P < 0.05). In both groups, there was an increase in the collagen volumetric fraction (CVF) and cardiac collagen type III expression (P < 0.05). The ND treatment increased left ventricle-angiotensin-converting enzyme I activity, AT1 receptor expression, aldosterone synthase (CYP11B2), and 11-beta hydroxysteroid dehydrogenase 2 (11 beta-HSD2) gene expression and inflammatory markers, TGF beta and osteopontin. Both losartan and spironolactone inhibited the increase of CVF and collagen type III. In addition, both treatments inhibited the increase in left ventricle-angiotensin-converting enzyme I activity, CYP11B2, 11 beta-HSD2, TGF beta, and osteopontin induced by the ND treatment. Conclusions: We believe this is the first study to show the effects of ND on cardiac aldosterone. Our results suggest that these effects may be associated to TGF beta and osteopontin. Thus, we conclude that the cardiac aldosterone has an important role on the deleterious effects on the heart induced by ND.
Resumo:
Protein kinase C beta II (PKC beta II) levels increase in the myocardium of patients with end-stage heart failure (HF). Also targeted overexpression of PKC beta II in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKC beta II in HF development. Using a post-myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKC beta II on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKC beta II selective inhibitor (beta IIV5-3 conjugated to TAT(47-57) carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT(47-57) carrier peptide alone). Formalin-fixed mid-ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two-fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKC beta II inhibitor. Further, a 90% decrease in active TGF beta 1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKC beta II attenuates cardiac remodelling mediated by the TGF-SMAD signalling pathway. Therefore, sustained selective inhibition of PKC beta II in a post-MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.
Resumo:
Leukotrienes (LTs) are potent lipid mediators involved in the control of host defense. LTB(4) induces leukocyte accumulation, enhances phagocytosis and bacterial clearance, and increases NO synthesis. LTB(4) is also important in early effector T cell recruitment that is mediated by LTB(4) receptor 1, the high-affinity receptor for LTB(4). The aims of this study were to evaluate whether LTs are involved in the secondary immune response to vaccination in a murine model of Histoplasma capsulatum infection. Our results demonstrate that protection of wild-type mice immunized with cell-free Ags from H. capsulatum against histoplasmosis was associated with increased LTB(4) and IFN-gamma production as well as recruitment of memory T cells into the lungs. In contrast, cell-free Ag-immunized mice lacking 5-lipoxygenase(-/-), a critical enzyme involved in LT synthesis, displayed a marked decrease on recruitment of memory T cells to the lungs associated with increased synthesis of TGF-beta as well as IL-10. Strikingly, these effects were associated with increased mortality to 5-lipoxygenase(-/-)-infected mice. These data establish an important immunomodulatory role of LTs, in both the primary and secondary immune responses to histoplasmosis. The Journal of Immunology, 2008,181: 8544-8551.
Resumo:
In the present study. MRNA for the cytokines interleukin-2 (IL-2), IL-4, IL-10 tumour necrosis factor-alpha (TNF-alpha) and transforming growth factor beta-1 (TGF-beta-1) were investigated in oral lichen planus (OLP) lesions using in situ hybridization with S-35-labelled oligonucleotide probes on frozen tissue sections. In addition, the expression of interferon-gamma (IFN-gamma), IL-10 and IL-4 mRNAs was analysed in cultured lesional T lymphocytes from oral lichen planus by polymerase chain reaction. Cells expressing mRNA for IL-2, IL-4, IL-10, TNF-alpha and TGF-beta(1) were found in all the biopsies studied. Approximately 1-2% of the total number of infiltrating cells in the lesions were positive for each of the different cytokine mRNAs. Most biopsies contained basement membrane-oriented, mRNA-positive cells. In the cultured T-cell lines, message for IFN-gamma was detected in all the patients, IL-10 in all but one, and IL-4 in just one of the seven patients investigated. The results suggest that mRNA for both pro- and anti-inflammatory cytokines, i.e., mixed T-helper 1 (T(H)1) and T(H)2 cytokine profiles, are generated simultaneously by a limited number of cells in chronic lesions of OLP. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
OBJECTIVE: To evaluate the influence of lactic acid on immune mediator release from vaginal epithelial cells. METHODS: The human vaginal epithelial cell line, VK2/E6E7, was cultured in the presence or absence of physiological concentrations of lactic acid, and in the presence or absence of the viral Toll-like receptor 3 agonist, poly (inosinic acid: cytidylic acid). Supernatants were assayed by enzyme-linked immunosorbent assay (ELISA) for interleukin (IL)-1 beta, IL-6, IL-8, IL-23, transforming growth factor (TGF)-beta and secretory leukocyte protease inhibitor. RESULTS: Vaginal epithelial cells spontaneously released IL-1 beta (25.9 pg/mL), IL-8 (1.0 ng/mL), TGF-beta (175 pg/mL), and secretory leukocyte protease inhibitor (33.8 ng/mL). Only TGF-beta production was marginally enhanced (49%) by addition of lactic acid alone. Poly (inosinic acid: cytidylic acid) by itself stimulated the release of IL-6 (305 pg/mL) and enhanced IL-8 production (2.8 ng/mL). The combination of poly (inosinic acid: cytidylic acid) and lactic acid markedly increased IL-8 production (5.0 ng/mL) and induced the release of IL-1 beta (96.2 pg/mL). The poly (inosinic acid: cytidylic acid)-mediated lactic acid effect on IL-1 beta and IL-8 release was abrogated when the lactic acid was neutralized or if acetic acid was substituted for lactic acid. CONCLUSION: Lactic acid enhances the release of selective mediators from vaginal epithelial cells and stimulates antiviral immune responses. (Obstet Gynecol 2011;118:840-6) DOI: 10.1097/AOG.0b013e31822da9e9
Resumo:
Becker LE, Koleganova N, Piecha G, Noronha IL, Zeier M, Geldyyev A, Kokeny G, Ritz E, Gross ML. Effect of paricalcitol and calcitriol on aortic wall remodeling in uninephrectomized ApoE knockout mice. Am J Physiol Renal Physiol 300: F772-F782, 2011. First published December 15, 2010; doi:10.1152/ajprenal.00042.2010.-Despitean only minor reduction in the glomerular filtration rate, uninephrectomy (UNX) markedly accelerates the rate of growth of atherosclerotic plaques in ApoE-/- mice. It has been suggested that vitamin D receptor (VDR) activation exerts an antiproliferative effect on vascular smooth muscle cells, but the side effects may limit its use. To assess a potentially different spectrum of actions, we compared the effects of paricalcitol and calcitriol on remodeling and calcification of the aortic wall in sham-operated and UNX ApoE-/- mice on a diet with normal cholesterol content. Sham-operated and UNX mice were randomly allotted to treatment with solvent, calcitriol (0.03 mu g/kg) or paricalcitol (0.1 mu g/kg) 5 times/wk intraperitoneally for 10 wk. Semithin (0.6 mu m) sections of the aorta were analyzed by 1) morphometry, 2) immunohistochemistry, and 3) Western blotting of key proteins involved in vascular calcification and growth. Compared with sham-operated animals (5.6 +/- 0.24), the wall-to-lumen ratio (x100) of the aorta was significantly higher in solvent-and calcitriol-treated UNX animals (6.64 +/- 0.27 and 7.17 +/- 0.81, respectively, P < 0.05), but not in paricalcitol-treated UNX (6.1 5 +/- 0.32). Similar differences were seen with respect to maximal plaque height. Expression of transforming growth factor (TGF)-beta 1 in aortic intima/plaque was also significantly higher in UNX solvent and UNX calcitriol compared with sham-operated and UNX paricalcitol animals. Treatment with both paricalcitol and calcitriol caused significant elevation of VDR expression in the aorta. While at the dose employed paricalcitol significantly reduced TGF-beta expression in plaques, calcitriol in contrast caused significant vascular calcification and elevated expression of related proteins (BMP2, RANKL, and Runx2).
Resumo:
Epithelial to mesenchymal transition (EMT) is a process implicated in cancer progression in which the underlying cellular changes have been identified mainly using in vitro models. We determined the expression of some putative EMT biomarkers including E-cadherin, beta-catenin, zinc finger factor Snail (Snail), transforming growth factor beta 1 (TGF beta 1), TGF beta type II receptor (TBRII) and the HGF receptor (c-met) and their possible correlation to progression and overall survival in a series of breast ductal carcinoma in situ (DCIS) and invasive ductal carcinomas (IDC). Biomarkers were immunohistochemically determined in 55 IDC specimens from which 21 had lymph node metastases and in 95 DCIS specimens, 46 of these cases associated to invasive carcinoma, in a tissue microarray (TMA). Positive cytoplasmic staining of TGF beta 1 (78.2%), c-met (43.6%), Snail (34.5%), TBRII (100%), membranous E-cadherin (74.5%) and membranous/cytoplasmic beta-catenin (71%) were detected in the IDC samples. Metastatic lymph node samples displayed similar frequencies. A significant increase of c-met and TGF beta 1 positivity along DCIS to IDC progression was noted but only TGF beta 1 positivity was associated with presence of lymph node metastases and advanced stages in IDC. The evaluation of the other EMT markers in DCIS did not show differences in positivity rate as compared to invasive carcinomas. DCIS either pure or associated to IDC showed similar expression of the analyzed biomarkers. All the carcinomas exhibited positive expression of TBRII. Associations between the markers, determined by Spearman`s correlation coefficient, showed a significant association between TGF beta 1 and respectively E-cadherin, beta-catenin and cmet in DCIS cases, but in invasive carcinomas only cadherin and catenin were positively correlated. Kaplan-Meier survival curves revealed that none of the EMT biomarkers analyzed were correlated with survival, which was significantly determined only by clinical and hormone receptor parameters.
Resumo:
P>Allergens can be maternally transferred to the fetus or neonate, though it is uncertain how this initial allergen exposure may impact the development of allergy responses. To evaluate the roles of timing and level of maternal allergen exposure in the early life sensitization of progeny, female BALB/c mice were given ovalbumin (OVA) orally during pregnancy, lactation or weekly at each stage to investigate the immunoglobulin E (IgE) antibody production and cellular responsiveness of their offspring. Exposure to OVA during pregnancy was also evaluated in OVA-specific T-cell receptor (TCR) transgenic (DO11.10) mice. The effect of prenatal antigen exposure on offspring sensitization was dependent on antigen intake, with low-dose OVA inducing tolerance followed by neonatal immunization that was sustained even when pups were immunized when 3 weeks old. These offspring received high levels of transforming growth factor-beta via breastfeeding. High-dose exposure during the first week of pregnancy or perinatal period induced transient inhibition of IgE production following neonatal immunization; although for later immunization IgE production was enhanced in these offspring. Postnatal maternal antigen exposure provided OVA transference via breastfeeding, which consequently induced increased offspring susceptibility to IgE antibody production according to week post-birth. The effect of low-dose maternal exposure during pregnancy was further evaluated using OVA transgenic TCR dams as a model. These progeny presented pronounced entry of CD4(+) T cells into the S phase of the cell cycle with a skewed T helper type 2 response early in life, revealing the occurrence of allergen priming in utero. The balance between tolerance and sensitization depended on the amount and timing of maternal allergen intake during pregnancy.
Resumo:
Myocardial hypertrophy and dysfunction occur in response to excessive catecholaminergic drive. Adverse cardiac remodelling is associated with activation of proinflammatory cytokines in the myocardium. To test the hypothesis that exercise training can prevent myocardial dysfunction and production of proinflammatory cytokines induced by beta-adrenergic hyperactivity, male Wistar rats were assigned to one of the following four groups: sedentary non-treated (Con); sedentary isoprenaline treated (Iso); exercised non-treated (Ex); and exercised plus isoprenaline (Iso+Ex). Echocardiography, haemodynamic measurements and isolated papillary muscle were used for functional evaluations. Real-time RT-PCR and Western blot were used to quantify tumour necrosis factor alpha, interleukin-6, interleukin-10 and transforming growth factor beta(1) (TGF-beta(1)) in the tissue. NF-kappa B expression in the nucleus was evaluated by immunohistochemical staining. The Iso rats showed a concentric hypertrophy of the left ventricle (LV). These animals exhibited marked increases in LV end-diastolic pressure and impaired myocardial performance in vitro, with a reduction in the developed tension and maximal rate of tension increase and decrease, as well as worsened recruitment of the Frank-Starling mechanism. Both gene and protein levels of tumour necrosis factor alpha and interleukin-6, as well as TGF-beta(1) mRNA, were increased. In addition, the NF-kappa B expression in the Iso group was significantly raised. In the Iso+Ex group, the exercise training had the following effects: (1) it prevented LV hypertrophy; (ii) it improved myocardial contractility; (3) it avoided the increase of proinflammatory cytokines and improved interleukin-10 levels; and (4) it attenuated the increase of TGF-beta(1) mRNA. Thus, exercise training in a model of beta-adrenergic hyperactivity can avoid the adverse remodelling of the LV and inhibit inflammatory cytokines. Moreover, the cardioprotection is related to beneficial effects on myocardial performance.
Resumo:
Myofibroblast development and haze generation in the corneal stroma is mediated by cytokines, including transforming growth factor-beta (TGF-beta), and possibly other cytokines. This study examined the effects of stromal PDGF-beta blockade on the development of myofibroblasts in response to -9.0 diopter photorefractive keratectomy in the rabbit. Rabbits that had haze generating photorefractive keratectomy (PRK, for 9 diopters of myopia) in one eye were divided into three different groups: stromal application of plasmid pCMV.PDGFRB.23KDEL expressing a subunit of PDGF receptor b (domains 2-3, which bind PDGF-B), stromal application of empty plasmid pCMV, or stromal application of balanced salt solution (BSS). The plasmids (at a concentration 1000 ng/mu l) or BSS was applied to the exposed stroma immediately after surgery and every 24 h for 4-5 days until the epithelium healed. The group treated with pCMV.PDGFRB.23KDEL showed lower alpha SMA+ myofibroblast density in the anterior stroma compared to either control group (P <= 0.001). Although there was also lower corneal haze at the slit lamp at one month after surgery, the difference in haze after PDGF-B blockade was not statistically significant compared to either control group. Stromal PDGF-B blockade during the early postoperative period following PRK decreases stromal alpha SMA+ myofibroblast generation. PDGF is an important modulator of myofibroblast development in the cornea. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Mucosal leishmaniasis (ML) is characterised by severe tissue destruction. Herein, we evaluated the involvement of the IL-17-type response in the inflammatory infiltrate of biopsy specimens from 17 ML patients. IL-17 and IL-17-inducing cytokines (IL-1 beta, IL-23, IL-6 and TGF-beta) were detected by immunohistochemistry in ML patients. IL-17(+) cells exhibited CD4(+), CD8(+) or CD14(+) phenotypes, and numerous IL-17(+) cells co-expressed the CC chemokine receptor 6 (CCR6). Neutrophils, a hallmark of Th17-mediated inflammation, were regularly detected in necrotic and perinecrotic areas and stained positive for neutrophil elastase, myeloperoxidase and MMP-9. Taken together, these observations demonstrate the existence of Th17 cells in ML lesions associated with neutrophils in areas of tissue injury and suggest that IL-17 is involved in ML pathogenesis.
Resumo:
Background and Aims: Stress can alter many aspects of the immune response, and many studies have been conducted on the effects of stress on inflammatory processes, but little is known about its influence on the resolution of inflammation in tissue homeostasis, which includes the clearance of apoptotic cells by macrophages in a non-phlogistic way. In the present study, we investigated the effect of acute cold stress on the phagocytosis of apoptotic cells by macrophages. Methods: Mice were submitted to acute cold stress (4 degrees C for 4 h) and the capacity of peritoneal macrophages to phagocyte apoptotic thymocytes and to secrete anti-inflammatory cytokines was evaluated. Plasma corticosterone and catecholamine levels were investigated to assess their effect on the phagocytic capacity of macrophages in vitro. Results: We showed that acute cold stress decreases phagocytosis of apoptotic cells at the inflammatory site by lipopolysaccharide-activated macrophages but did not affect resting macrophages. The inhibitory effect on phagocytosis is accompanied by a reduced level of TGF-beta and higher IL-10 secretion. After stress, plasma concentrations of corticosterone increased 6-fold, epinephrine 2-fold and norepinephrine 1.7-fold compared to control mice. In vitro experiments showed that the decrease in phagocytosis after stress could be attributed, at least in part, to the effects of corticosterone; epinephrine and norepinephrine had no effect. Conclusions: The current study shows that acute cold stress decreases phagocytosis of apoptotic cells from an inflammatory environment by macrophages, and this inhibition is mediated by the intracellular glucocorticoid receptor. Copyright (C) 2009 S. Karger AG, Basel