937 resultados para Tethered swimming model for rats
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigated whether stress interferes with fertility during adulthood. Male Wistar rats (weighing 220 g in the beginning of the experiment) were forced to swim for 3 min in water at 32ºC daily for 15 days. Stress was assessed by the hot-plate test after the last stressing session. To assess fertility, control and stressed males (N = 15 per group) were mated with sexually mature normal females. Males were sacrificed after copulation. Stress caused by forced swimming was demonstrated by a significant increase in the latency of the pain response in the hot-plate test (14.6 ± 1.25 s for control males vs 26.0 ± 1.53 s for stressed males, P = 0.0004). No changes were observed in body weight, testicular weight, seminal vesicle weight, ventral prostate weight or gross histological features of the testes of stressed males. Similarly, no changes were observed in fertility rate, measured by counting live fetuses in the uterus of normal females mated with control and stressed males; no dead or incompletely developed fetuses were observed in the uterus of either group. In contrast, there was a statistically significant decrease in spermatid production demonstrated by histometric evaluation (154.96 ± 5.41 vs 127.02 ± 3.95 spermatids per tubular section for control and stressed rats, respectively, P = 0.001). These data demonstrate that 15 days of forced swimming stress applied to adult male rats did not impair fertility, but significantly decreased spermatid production. This suggests that the effect of stress on fertility should not be assessed before at least the time required for one cycle of spermatogenesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The lactate minimum test (LACmin) has been considered an important indicator of endurance exercise capacity and a single session protocol can predict the maximal steady state lactate (MLSS). The objective of this study was to determine the best swimming protocol to induce hyperlactatemia in order to assure the LACmin in rats (Rattus norvegicus), standardized to four different protocols (P) of lactate elevation. The protocols were PI: 6 min of intermittent jumping exercise in water (load of 50% of the body weight - bw); P2: two 13% bw load swimming bouts until exhaustion (thin); P3: one thin 13% bw load swimming bout; and P4: two 13% bw load swimming bouts (1st 30 s, 2nd to thin), separated by a 30 s interval. The incremental phase of LACmin beginning with initial loads of 4% bw, increased in 0.5% at each 5 min. Peak lactate concentration was collected after 5, 7 and 9 min (mmol L-1) and differed among the protocols P 1 (15.2 +/- 0.4, 14.9 +/- 0.7, 14.8 +/- 0.6) and P2 (14.0 +/- 0.4, 14.9 +/- 0.4, 15.5 +/- 0.5) compared to P3 (5.1 +/- 0.1, 5.6 +/- 0.3, 5.6 +/- 0.3) and P4 (4.7 +/- 0.2, 6.8 +/- 0.2, 7.1 +/- 0.2). The LACmin determination success rates were 58%, 55%, 80% and 91% in P1, P2, P3 and P4 protocols, respectively. The MLSS did not differ from LACmin in any protocol. The LACmin obtained from P4 protocol showed better assurance for the MLSS identification in most of the tested rats. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present study was designed to determine the exercise intensity equivalent to the metabolic aerobic/anaerobic transition of alloxan diabetic rats, through lactate minimum test (LMT), and to evaluate the effects of swimming exercise at this intensity (LM) on the glucose and protein metabolism of these animals. Adult male Wistar rats received alloxan (SD, alloxan-injected rats that remained sedentary) intravenously (30 mg kg(-1) body weight) for diabetes induction. As controls (SC, vehicle-injected rats that remained sedentary), vehicle-injected rats were utilized. Two weeks later, the animals were submitted to oral glucose tolerance test (oGTT) and LMT. After the tests, some of the animals were submitted to swimming exercise training [TC (vehicle-injected rats that performed a 6-week exercise program) and TD (alloxan-injected rats that performed a 6-week exercise program)] for I h day(-1), 5 days week(-1), with an overload equivalent to LM determined by LMT, for 6 weeks. At the end of the experiment, the animals were submitted to a second LMT and oGTT, and blood and skeletal muscle assessments (protein synthesis and degradation in the isolated soleus muscle) were made. The overload equivalent to LM at the beginning of the experiment was lower in the SID group than in the SC group. After training, the overload equivalent to LM was higher in the TC and TD groups than in the SC and SD groups. The blood glucose of TD rats during oGTT was lower than that of SD rats. Protein degradation was higher in the SD group than in other groups. We conclude that LMT was sensitive to metabolic and physiologic alterations caused by uncontrolled diabetes. Training at LM intensity improved aerobic condition and the glucose and protein metabolism of alloxan diabetic rats. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to describe a double-bout exercise test for non-exhaustive aerobic capacity determination in swimming rats. Adult rats were Submitted to 4 swimming tests at different intensities (4%, 6%, 7%, and 8% of body mass), with intervals of 48 h between them. Two exercise bouts of equal intensity lasting 5 min were performed, separated by 2 min with blood collection for lactate analysis. For each intensity, delta lactate was determined by subtracting lactate concentration at the end of the first effort from the lactate at the end of the second effort. Individual linear interpolation of delta lactate concentration enabled determination of a null delta, equivalent to the critical load (CL). Maxima) lactate steady state (MLSS) was also determined. The estimated CL was of 4.8% body mass and the MLSS was observed at 100% of CL, with blood lactate of 5.20 mmol/L. At 90%, blood lactate stabilized, with a progressive increase to 110% CL. These results offer a potential determination of aerobic capacity in swimming rats.
Resumo:
Several studies have demonstrated that caffeine improves endurance exercise performance but the mechanisms are not fully understood. Possibilities include increased free fatty acid (FFA) oxidation with consequent sparing of muscle glycogen as well as enhancement of neuromuscular function during exercise. The present study was designed to investigate the effects of caffeine on liver and muscle glycogen of 3-month old, male Wistar rats (250-300 g) exercising by swimming. Caffeine (5 mg/kg) dissolved in saline (CAF) or 0.9% sodium chloride (SAL) was administered by oral intubation (1 mu l/g) to fed rats 60 min before exercise. The rats (N = and-IO per group) swam bearing a load corresponding to 5% body weight for 30 or 60 min. FFA levels were significantly elevated to 0.475 +/- 0.10 mEq/l in CAF compared to 0.369 +/- 0.06 mEq/l in SAL rats at the beginning of exercise. During exercise, a significant difference in FFA levels between CAF and SAL rats was observed at 30 min (0.325 +/- 0.06 vs 0.274 +/- 0.05 mEq/l) but not at 60 min (0.424 +/- 0.13 vs 0.385 +/- 0.10 mEq/l). Blood glucose showed an increase due to caffeine only at the end of exercise (CAF = 142.1 +/- 27.4 and SAL = 120.2 +/- 12.9 mg/100 ml). No significant difference in liver or muscle glycogen was observed in CAF as compared to SAL rats, at rest or during exercise. Caffeine increased blood lactate only at the beginning of exercise (CAF = 2.13 +/- 0.2 and SAL = 1.78 +/- 0.2 mmol/l). These data indicate that caffeine (5 mg/kg) has no glycogen-sparing effect on rats exercising by swimming even though the FFA levels of CAF rats were significantly higher at the beginning of exercise.
Resumo:
The study was performed to examine the responses to catecholamines in vas deferens isolated from rats submitted to acute swimming-induced stress. It was demonstrated that acute stress induces a significant subsensitivity of rat vas deferens to norepinephrine. This subsensitivity was inhibited when the experiment was carried out in the presence of either cocaine (10(-5) M) or timolol (10(-5) M). on the other hand, the rat vas deferens sensitivity to methoxamine was significantly increased by acute swimming-induced stress. Thus, despite acute swimming stress inducing a reduction in response to norepinephrine, the alpha(1)-adrenoceptor-mediated contractile response was increased. Additionally there were increases in neuronal uptake and beta(2)-adrenoceptor activity that opposes the alpha(1)-adrenoceptor activity. Integrated, these phenomena are responsible for the rat vas deferens subsensitivity to norepinephrine which may be involved in body homeostasis in stressogenic situations. (C) 1995 the Italian Pharmacological Society
Resumo:
The effects of prenatal exposure of rat pups to 0.08 mg/kg deltamethrin (DTM) on physical, reflex and behavioral developmental parameters, on forced swimming and open-field behaviors, and on striatal monoamine levels at 60 days of age were observed. Maternal and offspring body weight, physical and reflex development were unaffected by the exposure to the pesticide. At 21 days of age, open-field locomotion frequency and immobility duration of male and female offspring were not different between control and exposed animals. However, male rearing frequency was increased in experimental animals. A decreased immobility latency to float and in general activity after the swimming test in male offspring was observed at adult age; no interference was detected in the float duration during the swimming test. In addition, these animals presented higher striatal 3,4-dihydroxyphenylacetic acid (DOPAC) levels without modification in dopamine (DA) levels and an increased DOPAC/DA ratio. These data indicate a higher activity of the dopaminergic system in these animals. Noradrenaline (NA) levels were increased, while MHPG levels were not detectable in the system studied. Serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) levels, as well as the homovanillic acid (HVA)/DA ratio, were not modified by the exposure to the pesticide. No changes were observed in swimming and open-field behaviors nor were there any changes in striatal monoamines or their metabolites in the female experimental group. In relation to the pesticide formula, the present data showing that prenatal exposure to DTM alters latency to float and the activity of striatal dopaminergic system might reflect a persistent effect of the pesticide on animal motor activity, mainly in males. on the other hand, the decrease in general activity observed in experimental male rats suggests higher levels of emotionality induced by previous exposure to the swimming behavior test in relation to control animals. Data gathered in the present study may be important for the assessment of the safety of pyrethroid insecticides. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
The effects of androgenic deprivation induced by castration on the norepinephrine contractile response of vas deferens from rats, which have been submitted to acute swimming-stress were determined. Acute swimming-stress led to subsensitivity to norepinephrine in vas deferens excised from intact rats. Similarly, castration also induced subsensitivity to norepinephrine, but no further subsensitivity occurred in organs from castrated rats submitted to acute stress. The results indicate a different response to norepinephrine in terms of relative responsiveness ratio, when vas deferens was excised from castrated rats or castrated rats submitted to acute stress. It is suggested that androgenic steroids modulate the recovery of homeostasis in rat vas deferens during acute stress, and that this effect may involve mechanisms that affect both the sensitivity of adrenergic receptors and the system of neuronal uptake of catecholamines.