975 resultados para Taylor bubble


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to compare coronary magnetic resonance angiography (MRA) data obtained with different scanning methodologies, adequate visualization and presentation of the coronary MRA data need to be ensured. Furthermore, an objective quantitative comparison between images acquired with different scanning methods is desirable. To address this need, a software tool ("Soap-Bubble") that facilitates visualization and quantitative comparison of 3D volume targeted coronary MRA data was developed. In the present implementation, the user interactively specifies a curved subvolume (enclosed in the 3D coronary MRA data set) that closely encompasses the coronary arterial segments. With a 3D Delaunay triangulation and a parallel projection, this enables the simultaneous display of multiple coronary segments in one 2D representation. For objective quantitative analysis, frequently explored quantitative parameters such as signal-to-noise ratio (SNR); contrast-to-noise ratio (CNR); and vessel length, sharpness, and diameter can be assessed. The present tool supports visualization and objective, quantitative comparisons of coronary MRA data obtained with different scanning methods. The first results obtained in healthy adults and in patients with coronary artery disease are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas-liquid mass transfer is an important issue in the design and operation of many chemical unit operations. Despite its importance, the evaluation of gas-liquid mass transfer is not straightforward due to the complex nature of the phenomena involved. In this thesis gas-liquid mass transfer was evaluated in three different gas-liquid reactors in a traditional way by measuring the volumetric mass transfer coefficient (kLa). The studied reactors were a bubble column with a T-junction two-phase nozzle for gas dispersion, an industrial scale bubble column reactor for the oxidation of tetrahydroanthrahydroquinone and a concurrent downflow structured bed.The main drawback of this approach is that the obtained correlations give only the average volumetric mass transfer coefficient, which is dependent on average conditions. Moreover, the obtained correlations are valid only for the studied geometry and for the chemical system used in the measurements. In principle, a more fundamental approach is to estimate the interfacial area available for mass transfer from bubble size distributions obtained by solution of population balance equations. This approach has been used in this thesis by developing a population balance model for a bubble column together with phenomenological models for bubble breakage and coalescence. The parameters of the bubble breakage rate and coalescence rate models were estimated by comparing the measured and calculated bubble sizes. The coalescence models always have at least one experimental parameter. This is because the bubble coalescence depends on liquid composition in a way which is difficult to evaluate using known physical properties. The coalescence properties of some model solutions were evaluated by measuring the time that a bubble rests at the free liquid-gas interface before coalescing (the so-calledpersistence time or rest time). The measured persistence times range from 10 msup to 15 s depending on the solution. The coalescence was never found to be instantaneous. The bubble oscillates up and down at the interface at least a coupleof times before coalescence takes place. The measured persistence times were compared to coalescence times obtained by parameter fitting using measured bubble size distributions in a bubble column and a bubble column population balance model. For short persistence times, the persistence and coalescence times are in good agreement. For longer persistence times, however, the persistence times are at least an order of magnitude longer than the corresponding coalescence times from parameter fitting. This discrepancy may be attributed to the uncertainties concerning the estimation of energy dissipation rates, collision rates and mechanisms and contact times of the bubbles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the stability of small bubbles in a closed system with fixed volume, temperature, and number of molecules. We show that there exists a minimum stable size of a bubble. Thus there exists a range of densities where no stable bubbles are allowed and the system has a homogeneous density which is lower than the coexistence density of the liquid. This becomes possible due to the finite liquid compressibility. Capillary analysis within the developed"modified bubble" model illustrates that the existence of the minimum bubble size is associated to the compressibility and it is not possible when the liquid is strictly incompressible. This finding is expected to have very important implications in cavitation and boiling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the theoretical basis and the experimental requirements for the application of the Taylor dispersion technique for measurements of diffusion coefficients in liquids, emphasizing its simplicity and accuracy in comparison to other usual techniques. Some examples are discussed describing the use of this methodology on studies of solute-solvent interactions, solute aggregation, solute partitioning into macromolecular systems and on the assessment of nanoparticles sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature part of the work reviews overall Fischer-Tropsch process, Fischer-Tropsch reactors and catalysts. Fundamentals of Fischer-Tropsch modeling are also presented. The emphasis is on the reactor unit. Comparison of the reactors and the catalysts is carried out to choose the suitable reactor setup for the modeling work. The effects of the operation conditions are also investigated. Slurry bubble column reactor model operating with cobalt catalyst is developed by taking into account the mass transfer of the reacting components (CO and H2) and the consumption of the reactants in the liquid phase. The effect of hydrostatic pressure and the change in total mole flow rate in gas phase are taken into account in calculation of the solubilities. The hydrodynamics, reaction kinetics and product composition are determined according to literature. The cooling system and furthermore the required heat transfer area and number of cooling tubes are also determined. The model is implemented in Matlab software. Commercial scale reactor setup is modeled and the behavior of the model is investigated. The possible inaccuraries are evaluated and the suggestions for the future work are presented. The model is also integrated to Aspen Plus process simulation software, which enables the usage of the model in more extensive Fischer-Tropsch process simulations. Commercial scale reactor of diameter of 7 m and height of 30 m was modeled. The capacity of the reactor was calculated to be about 9 800 barrels/day with CO conversion of 75 %. The behavior of the model was realistic and results were in the right range. The highest uncertainty to model was estimated to be caused by the determination of the kinetic rate.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As diversas técnicas de interpolação espacial adotadas oferecem desempenhos diferentes, de acordo com as características dos dados iniciais, e é muito comum encontrar avaliadores contando somente com R² (coeficiente de determinação múltiplo) e erro residual. Neste trabalho, objetivou-se aplicar o Diagrama de Taylor para analisar 15 métodos diferentes de interpolação espacial, em área com cultivo comercial de eucalipto, para comparação e escolha do melhor método de interpolação de um conjunto de valores da fração granulométrica do solo (argila), na profundidade de 0-0,20 m do solo. De acordo com os resultados, considera-se muito satisfatória a ferramenta do Diagrama de Taylor, pois, além de definir graficamente os melhores métodos de interpolação, essa ferramenta permite fazer escolhas entre eles, dentro de um conjunto menor e mais definido de informações; logo, optou-se pelo método Splines em detrimento da krigagem modelo linear. As estatísticas desses dois métodos estão muito próximas, com pequenas variações, estando o desvio-padrão do Splines mais próximo dos dados observados; logo, é o melhor método de interpolação para argila, na profundidade de 0-0,20 m do solo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sustentabilidade da agricultura irrigada depende primariamente do manejo eficiente da irrigação, de modo a aumentar a produtividade primária de uma cultura em determinada localidade. A eficiência no uso de água pode ser melhorada pelo próprio esquema de irrigação adotado, sendo essencialmente governado pelas condições climáticas. O planejamento da irrigação e a tomada de decisão são funções do conhecimento da demanda evaporativa da atmosfera, sendo expressa pela demanda potencial (ETo). Em geral, quase todos os métodos de estimativa de ETo reportados na literatura referem-se a valores diários, incluindo-se nessa situação as perdas noturnas de evaporação, as quais serão expressivas apenas em alguns dias após a chuva ou irrigação. Desenvolveu-se, no presente estudo, método corrigido para estimar ETo, baseado no balanço de energia local, a partir de dados meteorológicos monitorados em postos de observação de superfície durante o período de luz. Para validação do método de Priestley-Taylor ajustado às condições locais, foram utilizados dados observados em estação meteorológica automática instalada em Piracicaba - SP, bem como medidas lisimétricas coletadas na Fazenda Areião da área experimental da ESALQ/USP. Estudos de regressão revelaram que o método proposto apresentou excelentes resultados quando comparado com o método de Penman-Monteith e com medidas realizadas em lisímetros de pesagem com célula de carga, dados os elevados valores de coeficiente de determinação obtidos, podendo ser recomendado, portanto, em estudos de avaliação de consumo de água das culturas em diversas localidades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During a possible loss of coolant accident in BWRs, a large amount of steam will be released from the reactor pressure vessel to the suppression pool. Steam will be condensed into the suppression pool causing dynamic and structural loads to the pool. The formation and break up of bubbles can be measured by visual observation using a suitable pattern recognition algorithm. The aim of this study was to improve the preliminary pattern recognition algorithm, developed by Vesa Tanskanen in his doctoral dissertation, by using MATLAB. Video material from the PPOOLEX test facility, recorded during thermal stratification and mixing experiments, was used as a reference in the development of the algorithm. The developed algorithm consists of two parts: the pattern recognition of the bubbles and the analysis of recognized bubble images. The bubble recognition works well, but some errors will appear due to the complex structure of the pool. The results of the image analysis were reasonable. The volume and the surface area of the bubbles were not evaluated. Chugging frequencies calculated by using FFT fitted well into the results of oscillation frequencies measured in the experiments. The pattern recognition algorithm works in the conditions it is designed for. If the measurement configuration will be changed, some modifications have to be done. Numerous improvements are proposed for the future 3D equipment.