95 resultados para Tammar wallaby (Macropus eugenii)
Resumo:
Loss of genetic diversity and increased population differentiation from source populations are common problems associated with translocation programmes established from captive-bred stock or a small number of founders. The bridled nailtail wallaby is one of the most endangered macropods in Australia, having been reduced to a single remnant population in the last 100 years. A translocated population of bridled nailtail wallabies was established using animals sourced directly from the remnant population (wild-released) as well as the progeny of animals collected for a captive breeding programme (captive-bred). The aims of this study were to compare genetic diversity among released animals and their wild-born progeny to genetic diversity observed in the remnant population, and to monitor changes in genetic diversity over time as more animals were released into the population. Heterozygosity did not differ between the translocated and remnant population; however, allelic diversity was significantly reduced across all released animals and their wild-born progeny. Animals bred in captivity and their wild-born progeny were also significantly differentiated from the source population after just four generations. Wild-released animals, however, were representative of the source population and several alleles were unique to this group. Both heterozygosity and allelic diversity among translocated animals decreased over time with the additional release of captive-bred animals, as no new genetic stock was added to the population. Captive breeding programmes can provide large numbers of animals for release, but this study highlights the importance of sourcing animals directly from remnant populations in order to maintain genetic diversity and minimise genetic drift.
Resumo:
We often need to estimate the size of wild populations to determine the appropriate management action, for example, to set a harvest quota. Monitoring is usually planned under the assumption that it must be carried out at fixed intervals in time, typically annually, before the harvest quota is set. However, monitoring can be very expensive, and we should weigh the cost of monitoring against the improvement that it makes in decision making. A less costly alternative to monitoring annually is to predict the population size using a population model and information from previous surveys. In this paper, the problem of monitoring frequency is posed within a decision-theory framework. We discover that a monitoring regime that varies according to the state of the system call outperform fixed-interval monitoring This idea is illustrated using data for a red kangaroo (Macropits rufus) population in South Australia. Whether or not one should monitor in a given year is dependent on the estimated population density in the previous year, the uncertainty in that population estimate, and past rainfall. We discover that monitoring is-important when a model-based prediction of population density is very uncertain. This may occur if monitoring has not taken place for several years, or if rainfall has been above average. Monitoring is also important when prior information suggests that the population is near a critical threshold in population abundance. However, monitoring is less important when the optimal management action would not be altered by new information.
Resumo:
Many endangered species worldwide are found in remnant populations, often within fragmented landscapes. However, when possible, an understanding of the natural extent of population structure and dispersal behaviour of threatened species would assist in their conservation and management. The brush-tailed rock-wallaby (Petrogale penicillata), a once abundant and widespread rock-wallaby species across southeastern Australia, has become nearly extinct across much of the southern part of its range. However, the northern part of the species' range still sustains many small colonies closely distributed across suitable habitat, providing a rare opportunity to investigate the natural population dynamics of a listed threatened species. We used 12 microsatellite markers to investigate genetic diversity, population structure and gene flow among brush-tailed rock-wallaby colonies within and among two valley regions with continuous habitat in southeast Queensland. We documented high and signifcant levels of population genetic structure between rock-wallaby colonies embedded in continuous escarpment habitat and forest. We found a strong and significant pattern of isolation-by-distance among colonies indicating restricted gene flow over a small geographic scale (< 10 km) and conclude that gene flow is more likely limited by intrinsic factors rather than environmental factors. In addition, we provide evidence that genetic diversity was significantly lower in colonies located in a more isolated valley region compared to colonies located in a valley region surrounded by continuous habitat. These findings shed light on the processes that have resulted in the endangered status of rock-wallaby species in Australia and they have strong implications for the conservation and management of both the remaining 'connected' brush-tailed rock-wallaby colonies in the northern parts of the species' range and the remnant endangered populations in the south.
Resumo:
Acacia harpophylla F. Muell. (brigalow) used to naturally occur over a range of about 50 000 km(2) in Queensland and New South Wales, Australia. Large scale clearing for agriculture has reduced the area to less than 20 000 km(2) and it is estimated that 20-25% of vertebrate fauna living in brigalow communities will become locally extinct as a result of the current clearing induced loss of habitat. Some coal mining companies in central Queensland have become interested in providing habitat for the endangered bridle nail-tailed wallaby that lives in brigalow vegetation. However, there is little known about establishment techniques for brigalow on mine sites and other disturbed ground; an understanding of brigalow biology and ecology is required to assist in the conservation of this threatened vegetation community and for re-creation of bridled nail-tail wallaby habitat in the post mining landscape. Brigalow is an unusual species of Acacia because it is not hard-seeded and germinates readily without the need to break seed-coat imposed dormancy. Germination trials were undertaken to test the ability of brigalow seed to germinate with a range of temperatures and salinity levels similar to those experienced in coal mine spoil. Optimum germination was found to occur at temperatures from 15 to 38 degrees C and no germination was recorded at 45 degrees C. Brigalow was very tolerant of high salt levels and germinated at percentages greater than 50% up to the highest salinity tested, 30 dS/m. Germination of greater than 90% occurred up to an electrical conductivity of 20 dS/m. The results indicate brigalow seed can be sown in summer when rains are most likely to occur, however, shading of the seed with extra soil or mulch may ensure the ground surface does not become too hot for germination. Because of its ability to germinate at high salinity levels, brigalow may be suitable for use in saline mine wastes which are common on sites to be rehabilitated after mining.
Resumo:
A quantitative radiolarian study at Ocean Drilling Program Site 1241 in the eastern tropical Pacific enables us to reconstruct paleoceanographic changes that occurred since the latest middle Miocene. Today, this site is located just under the Eastern Pacific Warm Pool (EPWP). Based on the abundance variations of radiolarian characteristic species which are indicators of upwelling and thermocline changes, it is suggested that three notable changes occurred at 10.6, 9.8, and 4.2 Ma in the region. Four distinct periods of oceanographic conditions bounded by these notable changes were characterized on the basis of the following: (1) stratified seawater (12.0 to 10.6 Ma); (2) a shallowing of the thermocline and an increasing of upwelling (10.6 to 9.8 Ma); (3) significant inflow of warm water to the eastern tropical Pacific caused by an intensified Northern Equatorial Countercurrent (NECC), resulting in the formation of EPWP (9.8 to 4.2 Ma); and (4) the reduction of the EPWP and the NECC, and an increase in upwelling (4.2 to 0 Ma). The timing of these paleoceanographic events indicated the strong relations with the opening and closing of the Indonesian and Central American (Panama) Seaways. The reduction of the EPWP (this study) and the deepening of the thermocline in western Pacific at about 4.2 Ma (Cannariato and Ravelo, 1997; Chaisson and Ravelo, 2000) indicated a change from a state resembling El Niño in the late Miocene and the early Pliocene time to a state resembling La Niña by the late Pliocene