993 resultados para TUMOR VOLUME
Resumo:
BACKGROUND Skull-base chondrosarcoma (ChSa) is a rare disease, and the prognostication of this disease entity is ill defined. METHODS We assessed the long-term local control (LC) results, overall survival (OS), and prognostic factors of skull-base ChSa patients treated with pencil beam scanning proton therapy (PBS PT). Seventy-seven (male, 35; 46%) patients with histologically confirmed ChSa were treated at the Paul Scherrer Institute. Median age was 38.9 years (range, 10.2-70.0y). Median delivered dose was 70.0 GyRBE (range, 64.0-76.0 GyRBE). LC, OS, and toxicity-free survival (TFS) rates were calculated using the Kaplan Meier method. RESULTS After a mean follow-up of 69.2 months (range, 4.6-190.8 mo), 6 local (7.8%) failures were observed, 2 of which were late failures. Five (6.5%) patients died. The actuarial 8-year LC and OS were 89.7% and 93.5%, respectively. Tumor volume > 25 cm(3) (P = .02), brainstem/optic apparatus compression at the time of PT (P = .04) and age >30 years (P = .08) were associated with lower rates of LC. High-grade (≥3) radiation-induced toxicity was observed in 6 (7.8%) patients. The 8-year high-grade TFS was 90.8%. A higher rate of high-grade toxicity was observed for older patients (P = .073), those with larger tumor volume (P = .069), and those treated with 5 weekly fractions (P = .069). CONCLUSIONS This is the largest PT series reporting the outcome of patients with low-grade ChSa of the skull base treated with PBS only. Our data indicate that protons are both safe and effective. Tumor volume, brainstem/optic apparatus compression, and age were prognosticators of local failures.
Resumo:
Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.
Resumo:
Recent publications have questioned the origin of the MDA-MB-435 breast cancer cell line and have suggested that it is of melanocyte origin rather than breast epithelial origin. The data presented herein show unequivocally that MDA-MB-435 does express breast epithelial markers and produces milk-specific lipids. The data also indicated that MDA-MB-435 does express some melanocyte proteins but this expression occurs in the same MDA-MB-435 cells that express breast epithelial proteins. Although MDA-MB-435 does not strictly adhere to a breast lineage, it does retain breast specific markers and is thus valid as an experimental cell line in breast cancer studies. ^ Heregulinβ1 (HRGβ1) has been shown to both stimulate and inhibit breast tumorigenic and metasastasic phenotypes. Some studies used only the EGF-like domain of the extracellular domain of HRGβ1 while others used bacterially-expressed HRGβ1. Our in vitro data demonstrated that the full-length extracellular domain of human HRGβ1 reduced clonal growth of MDA-MB-435 breast cancer cells but stimulated apoptosis in MDA-MB-435 and MCF-7 breast cancer cells. In addition, mammalian-expressed HRGβ1 did not dramatically affect matrix metalloproteinase-9 activity but did inhibit cell motility of MDA-MB-435 and MCF-7 cells. Taken together, the in vitro data indicated that HRGβ1 inhibits metastasis-associated properties. ^ The in vivo data demonstrated that inducible expression of the full-length extracellular domain of human HRGβ1 in MDA-MB-435 cells reduced tumor volume and cell proliferation but increased apoptosis of cells injected at the mammary fat pad in nude mice. More importantly, HRGβ1 reduced the number of metastases observed by a spontaneous metastasis assay. Taken together, these data indicate that the full-length extracellular domain of human HRGβ1 has the net effect of inhibiting breast cancer metastasis. ^
Resumo:
Introduction and objective. A number of prognostic factors have been reported for predicting survival in patients with renal cell carcinoma. Yet few studies have analyzed the effects of those factors at different stages of the disease process. In this study, different stages of disease progression starting from nephrectomy to metastasis, from metastasis to death, and from evaluation to death were evaluated. ^ Methods. In this retrospective follow-up study, records of 97 deceased renal cell carcinoma (RCC) patients were reviewed between September 2006 to October 2006. Patients with TNM Stage IV disease before nephrectomy or with cancer diagnoses other than RCC were excluded leaving 64 records for analysis. Patient TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were analyzed in relation to time to metastases. Time from nephrectomy to metastasis, TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were tested for significance in relation to time from metastases to death. Finally, analysis of laboratory values at time of evaluation, Eastern Cooperative Oncology Group performance status (ECOG), UCLA Integrated Staging System (UISS), time from nephrectomy to metastasis, TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were tested for significance in relation to time from evaluation to death. Linear regression and Cox Proportional Hazard (univariate and multivariate) was used for testing significance. Kaplan-Meier Log-Rank test was used to detect any significance between groups at various endpoints. ^ Results. Compared to negative lymph nodes at time of nephrectomy, a single positive lymph node had significantly shorter time to metastasis (p<0.0001). Compared to other histological types, clear cell histology had significant metastasis free survival (p=0.003). Clear cell histology compared to other types (p=0.0002 univariate, p=0.038 multivariate) and time to metastasis with log conversion (p=0.028) significantly affected time from metastasis to death. A greater than one year and greater than two year metastasis free interval, compared to patients that had metastasis before one and two years, had statistically significant survival benefit (p=0.004 and p=0.0318). Time from evaluation to death was affected by greater than one year metastasis free interval (p=0.0459), alcohol consumption (p=0.044), LDH (p=0.006), ECOG performance status (p<0.001), and hemoglobin level (p=0.0092). The UISS risk stratified the patient population in a statistically significant manner for survival (p=0.001). No other factors were found to be significant. ^ Conclusion. Clear cell histology is predictive for both time to metastasis and metastasis to death. Nodal status at time of nephrectomy may predict risk of metastasis. The time interval to metastasis significantly predicts time from metastasis to death and time from evaluation to death. ECOG performance status, and hemoglobin levels predicts survival outcome at evaluation. Finally, UISS appropriately stratifies risk in our population. ^
Resumo:
Advances in therapy for colorectal cancer have been hampered by development of resistance to chemotherapy. The Src family of protein tyrosine kinases has been associated with colorectal cancer development and progression. Activation of the prototypic member of the family, Src, occurs in advanced colorectal cancer and is associated with a worse outcome. This work tests the hypotheses that Src activation contributes to chemoresistance in some colon tumors and that this resistance can be overcome by use of Src inhibitors. The aims of the proposal were to (1) determine if constitutive Src activation is sufficient to induce oxaliplatin resistance; (2) evaluate the role of reactive oxygen species (ROS) in the activation of Src after oxaliplatin treatment; (3) determine the frequency of Src activation in liver metastases after oxaliplatin treatment; and (4) evaluate the safety, preliminary efficacy, and pharmacodynamics of the combination of dasatinib with oxaliplatin-based therapy in patients with metastatic colorectal cancer. ^ Using a panel of colon cancer cell lines and murine models, I demonstrate that administration of oxaliplatin, a commonly utilized chemotherapy for colorectal cancer, results in an increased activation of Src. The activation occurs acutely in some, but not all, colorectal carcinoma cell lines. Cell lines selected for oxaliplatin resistance are further increased in Src activity. Treatment of cell lines with dasatinib, a non-selective pharmacologic inhibitor of the Src family kinases synergistically killed some, but not all cell lines. Cell lines with the highest acute activation of Src after oxaliplatin administration were the most sensitive to the combination therapy. Previous work demonstrated that siRNA to Src increased sensitivity to oxaliplatin, suggesting that the effects of dasatinib are primarily due to its ability to inhibit Src in these cell lines. ^ To examine the mechanism underlying these results, I examined the effects of reactive oxygen species (ROS), as previous studies have demonstrated that platinum chemotherapeutics result in intracellular oxidative stress. I demonstrated that oxaliplatin-induced reactive oxygen species were higher in the cell lines with Src activation, relative to those in which Src was not activated. This oxaliplatin-induced Src activation was blocked by the administration of anti-oxidants, thereby demonstrating that synergistic killing between dasatinib and oxaliplatin was associated with the ability of the latter to generate ROS. ^ In a murine model of colorectal cancer metastasis to the liver, the combination of dasatinib and oxaliplatin was more effective in reducing tumor volume than either agent alone. However, when oxaliplatin resistant cell lines were treated with a combination of oxaliplatin and AZD0530, an inhibitor in the clinic with increased specificity for Src, no additional benefit was seen, although Src was activated by oxaliplatin and Src substrates were inhibited. The indolent growth of oxaliplatin-resistant cells, unlike the growth of oxaliplatin resistant tumors in patients, precludes definitive interpretation of these results. ^ To further explore Src activation in patients with oxaliplatin exposure and resistance, an immunohistochemistry analysis of tumor tissue from resected liver metastases of colorectal cancer was performed. Utilizing a tissue microarray, staining for phosphorylated Src and FAK demonstrated strong staining of tumor relative to stromal and normal liver. In patients recently exposed to oxaliplatin, there was increased FAK activation, supporting the clinical relevance of the prior preclinical studies. ^ To pursue the potential clinical benefit of the combination of Src inhibition with oxaliplatin, a phase IB clinical trial was completed. Thirty patients with refractory metastatic colorectal cancer were treated with a combination of 5-FU, oxaliplatin, an epidermal-growth factor receptor monoclonal antibody, and dasatinib. The recommended phase II dose of dasatinib was established, and toxicities were quantified. Pharmacodynamic studies demonstrated increased phosphorylation of the Src substrate paxillin after dasatinib therapy. Tumor biopsies were obtained and Src expression levels were quantitated. Clinical benefit was seen with the combination, including a response rate of 20% and disease control rate of 56%, prompting a larger clinical study. ^ In summary, although Src is constitutively activated in metastatic colorectal cancer, administration of oxaliplatin chemotherapy can further increase its activity, through a reactive oxygen species dependent manner. Inhibition of Src in combination with oxaliplatin provides additional benefit in vitro, in preclinical animal models, and in the clinic. Further study of Src inhibition in the clinic and identification of predictive biomarkers of response will be required to further advance this promising therapeutic target. ^
Resumo:
The clinical advantage for protons over conventional high-energy x-rays stems from their unique depth-dose distribution, which delivers essentially no dose beyond the end of range. In order to achieve it, accurate localization of the tumor volume relative to the proton beam is necessary. For cases where the tumor moves with respiration, the resultant dose distribution is sensitive to such motion. One way to reduce uncertainty caused by respiratory motion is to use gated beam delivery. The main goal of this dissertation is to evaluate the respiratory gating technique in both passive scattering and scanning delivery mode. Our hypothesis for the study was that optimization of the parameters of synchrotron operation and respiratory gating can lead to greater efficiency and accuracy of respiratory gating for all modes of synchrotron-based proton treatment delivery. The hypothesis is tested in two specific aims. The specific aim #1 is to assess the efficiency of respiratory-gated proton beam delivery and optimize the synchrotron operations for the gated proton therapy. A simulation study was performed and introduced an efficient synchrotron operation pattern, called variable Tcyc. In addition, the simulation study estimated the efficiency in the respiratory gated scanning beam delivery mode as well. The specific aim #2 is to assess the accuracy of beam delivery in respiratory-gated proton therapy. The simulation study was extended to the passive scattering mode to estimate the quality of pulsed beam delivery to the residual motion for several synchrotron operation patterns with the gating technique. The results showed that variable Tcyc operation can offer good reproducible beam delivery to the residual motion at a certain phase of the motion. For respiratory gated scanning beam delivery, the impact of motion on the dose distributions by scanned beams was investigated by measurement. The results showed the threshold for motion for a variety of scan patterns and the proper number of paintings for normal and respiratory gated beam deliveries. The results of specific aims 1 and 2 provided supporting data for implementation of the respiratory gating beam delivery technique into both passive and scanning modes and the validation of the hypothesis.
Resumo:
Triple-negative breast cancers (TNBC) are characterized by the lack of or reduced expression of the estrogen and progesterone receptors, and normal expression of the human epidermal growth factor receptor 2. The lack of a well-characterized target for treatment leaves only systemic chemotherapy as the mainstay of treatment. Approximately 60-70% of patients are chemosensitive, while the remaining majority does not respond. Targeted therapies that take advantage of the unique molecular perturbations found in triple-negative breast cancer are needed. The genes that are frequently amplified or overexpressed represent potential therapeutic targets for triple-negative breast cancer. The purpose of this study was to identify and validate novel therapeutic targets for triple-negative breast cancers. 681 genes showed consistent and highly significant overexpression in TNBC compared to receptor-positive cancers in 2 data sets. For two genes, 3 of the 4 siRNAs showed preferential growth inhibition in TNBC cells. These two genes were the low density lipoprotein receptor-related protein 8 (LRP8) and very low-density lipoprotein receptor (VLDLR). Exposure to their cognate ligands, reelin and apolipoprotein E isoform 4 (ApoE4), stimulated the growth of TNBC cells in vitro. Suppression of the expression of either LRP8 or VLDLR or exposure to RAP (an inhibitor of ligand binding to LRP8 and VLDLR) abolished this ligand-induced proliferation. High-throughput protein and metabolic arrays revealed that ApoE4 stimulation rescued TNBC cells from serum-starvation induced up-regulation of genes involved in lipid biosynthesis, increased protein expression of oncogenes involved in the MAPK/ERK and DNA repair pathways, and reduced the serum-starvation induction of biochemicals involved in oxidative stress response and glycolytic metabolism. shLRP8 MDA-MB-231 xenografts had reduced tumor volume, in comparison to parental and shCON xenografts. These results indicate that LRP8-APOE signaling confers survival advantages to TNBC tumors under reduced nutrient conditions and during cellular environmental stress. We revealed that the LRP8-APOE receptor-ligand system is overexpressed in human TNBC. We also demonstrated that this receptor system mediates a strong growth promoting and survival function in TNBC cells in vitro and helps to sustain the growth of MDA-MD-231 xenografts. We propose that inhibitors of LRP8-APOE signaling may be clinically useful therapeutic agents for triple-negative breast cancer.
Resumo:
El cáncer de próstata es el tipo de cáncer con mayor prevalencia entre los hombres del mundo occidental y, pese a tener una alta tasa de supervivencia relativa, es la segunda mayor causa de muerte por cáncer en este sector de la población. El tratamiento de elección frente al cáncer de próstata es, en la mayoría de los casos, la radioterapia externa. Las técnicas más modernas de radioterapia externa, como la radioterapia modulada en intensidad, permiten incrementar la dosis en el tumor mientras se reduce la dosis en el tejido sano. Sin embargo, la localización del volumen objetivo varía con el día de tratamiento, y se requieren movimientos muy pequeños de los órganos para sacar partes del volumen objetivo fuera de la región terapéutica, o para introducir tejidos sanos críticos dentro. Para evitar esto se han desarrollado técnicas más avanzadas, como la radioterapia guiada por imagen, que se define por un manejo más preciso de los movimientos internos mediante una adaptación de la planificación del tratamiento basada en la información anatómica obtenida de imágenes de tomografía computarizada (TC) previas a la sesión terapéutica. Además, la radioterapia adaptativa añade la información dosimétrica de las fracciones previas a la información anatómica. Uno de los fundamentos de la radioterapia adaptativa es el registro deformable de imágenes, de gran utilidad a la hora de modelar los desplazamientos y deformaciones de los órganos internos. Sin embargo, su utilización conlleva nuevos retos científico-tecnológicos en el procesamiento de imágenes, principalmente asociados a la variabilidad de los órganos, tanto en localización como en apariencia. El objetivo de esta tesis doctoral es mejorar los procesos clínicos de delineación automática de contornos y de cálculo de dosis acumulada para la planificación y monitorización de tratamientos con radioterapia adaptativa, a partir de nuevos métodos de procesamiento de imágenes de TC (1) en presencia de contrastes variables, y (2) cambios de apariencia del recto. Además, se pretende (3) proveer de herramientas para la evaluación de la calidad de los contornos obtenidos en el caso del gross tumor volumen (GTV). Las principales contribuciones de esta tesis doctoral son las siguientes: _ 1. La adaptación, implementación y evaluación de un algoritmo de registro basado en el flujo óptico de la fase de la imagen como herramienta para el cálculo de transformaciones no-rígidas en presencia de cambios de intensidad, y su aplicabilidad a tratamientos de radioterapia adaptativa en cáncer de próstata con uso de agentes de contraste radiológico. Los resultados demuestran que el algoritmo seleccionado presenta mejores resultados cualitativos en presencia de contraste radiológico en la vejiga, y no distorsiona la imagen forzando deformaciones poco realistas. 2. La definición, desarrollo y validación de un nuevo método de enmascaramiento de los contenidos del recto (MER), y la evaluación de su influencia en el procedimiento de radioterapia adaptativa en cáncer de próstata. Las segmentaciones obtenidas mediante el MER para la creación de máscaras homogéneas en las imágenes de sesión permiten mejorar sensiblemente los resultados de los algoritmos de registro en la región rectal. Así, el uso de la metodología propuesta incrementa el índice de volumen solapado entre los contornos manuales y automáticos del recto hasta un valor del 89%, cercano a los resultados obtenidos usando máscaras manuales para el registro de las dos imágenes. De esta manera se pueden corregir tanto el cálculo de los nuevos contornos como el cálculo de la dosis acumulada. 3. La definición de una metodología de evaluación de la calidad de los contornos del GTV, que permite la representación de la distribución espacial del error, adaptándola a volúmenes no-convexos como el formado por la próstata y las vesículas seminales. Dicha metodología de evaluación, basada en un nuevo algoritmo de reconstrucción tridimensional y una nueva métrica de cuantificación, presenta resultados precisos con una gran resolución espacial en un tiempo despreciable frente al tiempo de registro. Esta nueva metodología puede ser una herramienta útil para la comparación de distintos algoritmos de registro deformable orientados a la radioterapia adaptativa en cáncer de próstata. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como cimiento de futuros avances en el procesamiento de imagen médica en los tratamientos de radioterapia adaptativa en cáncer de próstata. Asimismo, se siguen abriendo nuevas líneas de aplicación futura de métodos de procesamiento de imágenes médicas con el fin de mejorar los procesos de radioterapia adaptativa en presencia de cambios de apariencia de los órganos, e incrementar la seguridad del paciente. I.2 Inglés Prostate cancer is the most prevalent cancer amongst men in the Western world and, despite having a relatively high survival rate, is the second leading cause of cancer death in this sector of the population. The treatment of choice against prostate cancer is, in most cases, external beam radiation therapy. The most modern techniques of external radiotherapy, as intensity modulated radiotherapy, allow increasing the dose to the tumor whilst reducing the dose to healthy tissue. However, the location of the target volume varies with the day of treatment, and very small movements of the organs are required to pull out parts of the target volume outside the therapeutic region, or to introduce critical healthy tissues inside. Advanced techniques, such as the image-guided radiotherapy (IGRT), have been developed to avoid this. IGRT is defined by more precise handling of internal movements by adapting treatment planning based on the anatomical information obtained from computed tomography (CT) images prior to the therapy session. Moreover, the adaptive radiotherapy adds dosimetric information of previous fractions to the anatomical information. One of the fundamentals of adaptive radiotherapy is deformable image registration, very useful when modeling the displacements and deformations of the internal organs. However, its use brings new scientific and technological challenges in image processing, mainly associated to the variability of the organs, both in location and appearance. The aim of this thesis is to improve clinical processes of automatic contour delineation and cumulative dose calculation for planning and monitoring of adaptive radiotherapy treatments, based on new methods of CT image processing (1) in the presence of varying contrasts, and (2) rectum appearance changes. It also aims (3) to provide tools for assessing the quality of contours obtained in the case of gross tumor volume (GTV). The main contributions of this PhD thesis are as follows: 1. The adaptation, implementation and evaluation of a registration algorithm based on the optical flow of the image phase as a tool for the calculation of non-rigid transformations in the presence of intensity changes, and its applicability to adaptive radiotherapy treatment in prostate cancer with use of radiological contrast agents. The results demonstrate that the selected algorithm shows better qualitative results in the presence of radiological contrast agents in the urinary bladder, and does not distort the image forcing unrealistic deformations. 2. The definition, development and validation of a new method for masking the contents of the rectum (MER, Spanish acronym), and assessing their impact on the process of adaptive radiotherapy in prostate cancer. The segmentations obtained by the MER for the creation of homogenous masks in the session CT images can improve significantly the results of registration algorithms in the rectal region. Thus, the use of the proposed methodology increases the volume overlap index between manual and automatic contours of the rectum to a value of 89%, close to the results obtained using manual masks for both images. In this way, both the calculation of new contours and the calculation of the accumulated dose can be corrected. 3. The definition of a methodology for assessing the quality of the contours of the GTV, which allows the representation of the spatial distribution of the error, adapting it to non-convex volumes such as that formed by the prostate and seminal vesicles. Said evaluation methodology, based on a new three-dimensional reconstruction algorithm and a new quantification metric, presents accurate results with high spatial resolution in a time negligible compared to the registration time. This new approach may be a useful tool to compare different deformable registration algorithms oriented to adaptive radiotherapy in prostate cancer In conclusion, this PhD thesis corroborates the postulated research hypotheses, and is intended to serve as a foundation for future advances in medical image processing in adaptive radiotherapy treatment in prostate cancer. In addition, it opens new future applications for medical image processing methods aimed at improving the adaptive radiotherapy processes in the presence of organ’s appearance changes, and increase the patient safety.
Resumo:
We present an approach for evaluating the efficacy of combination antitumor agent schedules that accounts for order and timing of drug administration. Our model-based approach compares in vivo tumor volume data over a time course and offers a quantitative definition for additivity of drug effects, relative to which synergism and antagonism are interpreted. We begin by fitting data from individual mice receiving at most one drug to a differential equation tumor growth/drug effect model and combine individual parameter estimates to obtain population statistics. Using two null hypotheses: (i) combination therapy is consistent with additivity or (ii) combination therapy is equivalent to treating with the more effective single agent alone, we compute predicted tumor growth trajectories and their distribution for combination treated animals. We illustrate this approach by comparing entire observed and expected tumor volume trajectories for a data set in which HER-2/neu-overexpressing MCF-7 human breast cancer xenografts are treated with a humanized, anti-HER-2 monoclonal antibody (rhuMAb HER-2), doxorubicin, or one of five proposed combination therapy schedules.
Resumo:
Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various cancers in vivo. This effect is thought to be exerted through suppression of the pituitary growth hormone–hepatic insulin-like growth factor I (IGF-I) axis and direct inhibition of autocrine/paracrine production of IGF-I and -II in tumors. However, other evidence points to a direct effect of GHRH antagonists on tumor growth that may not implicate IGFs, although an involvement of GHRH in the proliferation of cancer cells has not yet been established. In the present study we investigated whether GHRH can function as an autocrine/paracrine growth factor in small cell lung carcinoma (SCLC). H-69 and H-510A SCLC lines cultured in vitro express mRNA for GHRH, which apparently is translated into peptide GHRH and then secreted by the cells, as shown by the detection of GHRH-like immunoreactivity in conditioned media from the cells cultured in vitro. In addition, the levels of GHRH-like immunoreactivity in serum from nude mice bearing H-69 xenografts were higher than in tumor-free mice. GHRH(1–29)NH2 stimulated the proliferation of H-69 and H-510A SCLCs in vitro, and GHRH antagonist JV-1–36 inhibited it. JV-1–36 administered s.c. into nude mice bearing xenografts of H-69 SCLC reduced significantly (P < 0.05) tumor volume and weight, after 31 days of therapy, as compared with controls. Collectively, our results suggest that GHRH can function as an autocrine growth factor in SCLCs. Treatment with antagonistic analogs of GHRH may offer a new approach to the treatment of SCLC and other cancers.
Resumo:
Improvements in diagnostic techniques and, above all, breast cancer screening campaigns - essential for early diagnosis - have enabled the objectives of conservative surgery to be pursued: disease control, no or low incidence of recurrences and an excellent esthetic result. However, to reach these objectives, it is essential to ensure a careful evaluation of the medical history of every patient, a detailed clinical examination and the correct interpretation of imaging. Particular attention should be paid to all factors influencing the choice of treatment and/or possible local recurrence: age, site, tumor volume, genetic predisposition, pregnancy, previous radiotherapy, pathological features, and surgical margins. The decision to undertake conservative treatment thus requires a multidisciplinary approach involving pathologists, surgeons and oncological radiologists, as well, of course, as the patient herself.
Resumo:
Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas
Resumo:
Background: Glioblastoma multiforme (GBM) is one of the deadliest and most aggressive form of primary brain tumor. Unfortunately, current GBM treatment therapies are not effective in treating GBM patients. They usually experience very poor prognosis with a median survival of approximately 12 months. Only 3-5% survive up to 3 years or more. A large-scale gene profile study revealed that several genes involved in essential cellular processes are altered in GBM, thus, explaining why existing therapies are not effective. The survival of GBM patients depends on understanding the molecular and key signaling events associated with these altered physiological processes in GBM. Phosphoinositides (PI) form just a tiny fraction of the total lipid content in humans, however they are implicated in almost all essential biological processes, such as acting as second messengers in spatio-temporal regulation of cell signaling, cytoskeletal reorganization, cell adhesion, migration, apoptosis, vesicular trafficking, differentiation, cell cycle and post-translational modifications. Interestingly, these essential processes are altered in GBM. More importantly, incoming reports have associated PI metabolism, which is mediated by several PI phosphatases such as SKIP, lipases such as PLCβ1, and other kinases, to regulate GBM associated cellular processes. Even as PLCβ1 and SKIP are involved in regulating aberrant cellular processes in several other cancers, very few studies, of which majority are in-silico-based, have focused on the impact of PLCβ1 and SKIP in GBM. Hence, it is important to employ clinical, in vitro, and in vivo GBM models to define the actual impact of PLCβ1 and SKIP in GBM. AIM: Since studies of PLCβ1 and SKIP in GBM are limited, this study aimed at determining the pathological impact of PI metabolic enzymes, PLCB1 and SKIP, in GBM patient samples, GBM cell line models, and xenograft models for SKIP. Results: For the first time, this study confirmed through qPCR that PLCβ1 gene expression is lower in human GBM patient samples. Moreover, PLCβ1 gene expression inversely correlates with pathological grades of glioma; it decreases as glioma grades increases or worsens. Silencing PLCβ1 in U87MG GBM cells produces a dual impact in GBM by participating in both pro-tumoral and anti-tumoral roles. PLCβ1 knockdown cells were observed to have more migratory abilities, increased cell to extracellular matrix (ECM) adhesion, transition from epithelial phenotype to mesenchymal phenotype through the upregulation of EMT transcription factors Twist1 and Slug, and mesenchymal marker, vimentin. On the other hand, p-Akt and p-mTOR protein expression were downregulated in PLCβ1 knockdown cells. Thus, the oncogenic pathway PI3K/Akt/mTOR pathway is inhibited during PLCβ1 knockdown. Consistently, cell viability in PLCβ1 knockdown cells were significantly decreased compared to controls. As for SKIP, this study demonstrated that about 48% of SKIP colocalizes with nuclear PtdIns(4,5)P2 to nuclear speckles and that SKIP knockdown alters nuclear PtdIns(4,5)P2 in a cell-type dependent manner. In addition, SKIP silencing increased tumor volume and weight in xenografts than controls by reducing apoptosis and increasing viability. All in all, these data confirm that PLCβ1 and SKIP are involved in GBM pathology and a complete understanding of their roles in GBM may be beneficial.
Resumo:
The treatment of metastatic castration-resistant prostate cancer (mCRPC) is currently characterized by several drugs with different mechanisms of action, such as new generation hormonal agents (abiraterone, enzalutamide), chemotherapy (docetaxel, cabazitaxel), PARP inhibitors (olaparib) and radiometabolic therapies (radium-223, LuPSMA). There is an urgent need to identify biomarkers to guide personalized therapy in mCRPC. In recent years, the status of androgen receptor (AR) gene detected in liquid biopsy has been associated with outcomes in patients treated with abiraterone or enzalutamide. More recently, plasma tumor DNA (ptDNA) and its changes during treatment have been identified as early indicators of response to anticancer treatments. Recent works also suggested a potential role of tumor-related metabolic parameters of 18Fluoro-Choline Positron Emission Tomography (F18CH-PET)-computed tomography (CT) as a prognostic tool in mCRCP. Other clinical features, such as the presence of visceral metastases, have been correlated with outcome in mCRPC patients. Recent studies conducted by our research group have designed and validated a prognostic model based on the combination of molecular characteristics (ptDNA levels), metabolic features found in basal FCH PET scans (metabolic tumor volume values, MTV), clinical parameters (absence or presence of visceral metastases), and laboratory tests (serum lactate dehydrogenase levels, LDH). Within this PhD project, 30 patients affected by mCRPC, pre-treated with abiraterone or enzalutamide, candidate for taxane-based treatments (docetaxel or cabazitaxel), have been prospectively evaluated. The prognostic model previously described was applied to this population, to interrogate its prognostic power in a more advanced cohort of patients, resulting in a further external validation of the tool.
Resumo:
Introdução: O cancro retal continua a ser um dos principais problemas de saúde a nível mundial, sendo a toxicidade gastro-intestinal e génito-urinária os efeitos tardios da radioterapia mais reportados. A utilização da Belly-Board para minimizar essa toxicidade, reduzindo o volume de bexiga e intestino delgado irradiados é recomendada. No entanto, o protocolo mais adequado para o volume vesical nestes doentes é ainda tema de controvérsia. Objetivo: Avaliar a influência do volume vesical na dose recebida na bexiga e no PTV, em doentes com tumor de reto, posicionados em decúbito ventral, com belly-board. Materiais e Métodos: 38 doentes com tumor de reto tratados no CHBM, agrupados em dois grupos: o 1º grupo, com 19 doentes que realizaram tratamento com bexiga cheia e o 2º grupo, com 19 doentes que realizaram tratamento com bexiga vazia. Os dados foram obtidos através dos HDV’s e foram comparadas as doses máximas no PTV e a percentagem de volume de bexiga que recebe 50Gy. Foi utilizado o teste estatístico U-Mann Whitney com um nível de significância de 0,05. A hipótese de pesquisa deste estudo propõe que os dois grupos diferem significativamente entre si e a hipótese nula propõe que os dois grupos não diferem significativamente entre si, para ambas as variáveis. Resultados: Não se observaram diferenças estatisticamente significativas entre os grupos no que diz respeito à dose máxima no PTV. No que se refere à percentagem de volume de bexiga que recebe 50Gy verificaram-se diferenças estatisticamente significativas, tendo o grupo de doentes que realizaram tratamento com bexiga cheia apresentado valores mais baixos. Conclusões: Este estudo demonstrou o benefício da utilização do protocolo de bexiga cheia em doentes com tumor de reto tratados com belly-board, na diminuição da percentagem de volume de bexiga que recebe 50Gy.