972 resultados para TOTAL CROSS-SECTIONS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at root s = 7 TeV is presented. The data sample corresponds to an integrated luminosity of 5.0 fb(-1) collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 GeV respectively, in the pseudorapidity range vertical bar eta vertical bar < 2.5, vertical bar eta vertical bar (sic) [1.44, 1.57] and with an angular separation Delta R > 0.45, is 17.2 +/-0.2 (stat) +/-1.9 (syst) +/- 0.4 (lumi) pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.
Resumo:
A time reversal symmetric regularized electron exchange model was used to elastic scattering, target elastic Ps excitations and target inelastic excitation of hydrogen in a five state coupled model. A singlet Ps-H-S-wave resonance at 4.01 eV of width 0.15 eV and a P-wave resonance at 5.08 eV of width 0.004 eV were obtained using this model. The effect on the convergence of the coupled-channel scheme due to the inclusion of the excited Ps and H states was also analyzed.
Resumo:
The electronic stopping cross section (SCS) of Al2O3 for proton beams is studied both experimentally and theoretically. The measurements are made for proton energies from 40 keV up to 1 MeV, which cover the maximum stopping region, using two experimental methods, the transmission technique at low energies (similar to 40-175 keV) and the Rutherford backscattering at high energies (approximate to 190-1000 keV). These new data reveal an increment of 16% in the SCS around the maximum stopping with respect to older measurements. The theoretical study includes electronic stopping power calculations based on the dielectric formalism and on the transport cross section (TCS) model to describe the electron excitations of Al2O3. The non-linear TCS calculations of the SCS for valence electrons together with the generalized oscillator strengths (GOS) model for the core electrons compare well with the experimental data in the whole range of energies considered.
Resumo:
The aim of this study was to compare two methods of assessing apical transportation in curved canals after rotary instrumentation, namely, cross-sections and micro-computed tomography (mu CT). Thirty mandibular molars were divided into two groups and prepared according to the requirements of each method. In G1 (cross-sections), teeth were embedded in resin blocks and sectioned at 2.0, 3.5, and 5.0 mm from the anatomic apex. Pre- and postoperative sections were photographed and analyzed. In G2 (mu CT), teeth were embedded in a rubber-base impression material and scanned before and after instrumentation. Mesiobuccal canals were instrumented with the Twisted File (TF) system (SybronEndo, Orange, USA), and mesiolingual canals, with the Endo Sequence (ES) system (Brasseler, Savannah, USA). Images were reconstructed, and sections corresponding to distances 2.0, 3.5, and 5.0 mm from the anatomic apex were selected for comparison. Data were analyzed using Mann-Whitney's test at a 5% significance level. The TF and ES instruments produced little deviation from the root canal center, with no statistical difference between them (P > 0.05). The canal transportation results were significantly lower (0.056 mm) in G2 than in G1 (0.089 mm) (p = 0.0012). The mu CT method was superior to the cross-section method, especially in view of its ability to preserve specimens and provide results that are more closely related to clinical situations.
Resumo:
Within the framework of a (1 + 1)-dimensional model which mimics high-energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic gamma*h scattering cross sections. We analyze the cases of both fixed and running coupling within the mean-field approximation, in which the evolution of the scattering amplitude is described by the Balitsky-Kovchegov equation, and also through the pomeron loop equations, which include in the evolution the gluon number fluctuations. In the diffractive case, similarly to the inclusive one, suppression of the diffusive scaling, as a consequence of the inclusion of the running of the coupling, is observed.
Resumo:
Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p + p collisions at root s = 62.4 GeV are presented. The PHENIX measurement of the cross sections for 1.0 < p(T) < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong-coupling constant, alpha(s). Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 less than or similar to x(gluon) less than or similar to 0.2, is consistent with recent global parametrizations disfavoring large gluon polarization.
Resumo:
La sezione d’urto totale adronica gioca un ruolo fondamentale nel programma di fisica di LHC. Un calcolo di questo parametro, fondamentale nell’ambito della teoria delle interazioni forti, non é possibile a causa dell’inapplicabilità dell’approccio perturbativo. Nonostante ciò, la sezione d’urto può essere stimata, o quanto meno le può essere dato un limite, grazie ad un certo numero di relazioni, come ad esempio il Teorema Ottico. In questo contesto, il detector ALFA (An Absolute Luminosity For ATLAS) sfrutta il Teorema Ottico per determinare la sezione d’urto totale misurando il rate di eventi elastici nella direzione forward. Un tale approccio richiede un metodo accurato di misura della luminosità in condizioni sperimentali difficoltose, caratterizzate da valori di luminosità istantanea inferiore fino a 7 ordini di grandezza rispetto alle normali condizioni di LHC. Lo scopo di questa tesi è la determinazione della luminosità integrata di due run ad alto β*, utilizzando diversi algoritmi di tipo Event-Counting dei detector BCM e LUCID. Particolare attenzione è stata riservata alla sottrazione del fondo e allo studio delle in- certezze sistematiche. I valori di luminosità integrata ottenuti sono L = 498.55 ± 0.31 (stat) ± 16.23 (sys) μb^(-1) and L = 21.93 ± 0.07 (stat) ± 0.79 (sys) μb^(-1), rispettivamente per i due run. Tali saranno forniti alla comunità di fisica che si occupa della misura delle sezioni d’urto protone-protone, elastica e totale. Nel Run II di LHC, la sezione d’urto totale protone-protone sarà stimata con un’energia nel centro di massa di 13 TeV per capire meglio la sua dipendenza dall’energia in un simile regime. Gli strumenti utilizzati e l’esperienza acquisita in questa tesi saranno fondamentali per questo scopo.
Resumo:
Charge-transfer cross sections have been obtained by using time-of-flight techniques, and results correlated with reaction energetics and theoretical structures computed by self-consistent field-molecular orbital methods. Ion recombination energies, structures, heats of formation, reaction energy defects, and 3.0-keV charge-transfer cross sections are presented for reactions of molecular and fragment ions produced by electron bombardment ionization of CH30CH, and CH$l molecules. Relationships between experimental cross sections and reaction energetics involving different ion structures are discussed.