961 resultados para TNF Receptor-Associated Death Domain Protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased pro-inflammatory state has been implicated in the pathophysiology of major depressive disorder. The aim of this study was to determine serum levels of INF-alpha and soluble TNF-alpha receptors 1 and 2 (sTNFR1 and sTNFR2) in anti-depressant free depressed elderly patients as compared to healthy controls. Sixty-seven older adults (28 with major depression and 39 controls) were enrolled to this study. Participants were assessed by the SCID and diagnosis of major depressive episode was made according to the DSM-IV criteria. Serum INF-alpha, 5TNFR1 and sTNFR2 were determined by ELISA. Anti-depressant free patients with late-life depression showed an increased level of the sTNFR2 as compared to controls (p = 0.03). No significant differences were found in serum INF-alpha and sTNFR1 levels (p = 0.1 and p = 0.4, respectively). There was no correlation between serum levels of these inflammatory markers and the severity of depression. Our findings provide additional evidence of the involvement of abnormal pro-inflammatory state in late-life depression. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans and mice lacking functional caspase-8 in T cells manifest a profound immunodeficiency syndrome due to defective T cell antigen receptor (TCR)-induced NF-kappaB signaling and proliferation. It is unknown how caspase-8 is activated following T cell stimulation, and what is the caspase-8 substrate(s) that is necessary to initiate T cell cycling. We observe that following TCR ligation, a small portion of total cellular caspase-8 and c-FLIP(L) rapidly migrate to lipid rafts where they associate in an active caspase complex. Activation of caspase-8 in lipid rafts is followed by rapid cleavage of c-FLIP(L) at a known caspase-8 cleavage site. The active caspase.c-FLIP complex forms in the absence of Fas (CD95/APO1) and associates with the NF-kappaB signaling molecules RIP1, TRAF2, and TRAF6, as well as upstream NF-kappaB regulators PKC theta, CARMA1, Bcl-10, and MALT1, which connect to the TCR. The lack of caspase-8 results in the absence of MALT1 and Bcl-10 in the active caspase complex. Consistent with this observation, inhibition of caspase activity attenuates NF-kappaB activation. The current findings define a link among TCR, caspases, and the NF-kappaB pathway that occurs in a sequestered lipid raft environment in T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methyl-CpG Binding Domain (MBD) proteins are thought to be key molecules in the interpretation of DNA methylation signals leading to gene silencing through recruitment of chromatin remodeling complexes. In cancer, the MBD-family member, MBD2, may be primarily involved in the repression of genes exhibiting methylated CpG at their 5' end. Here we ask whether MBD2 randomly associates methylated sequences, producing chance effects on transcription, or exhibits a more specific recognition of some methylated regions. Using chromatin and DNA immunoprecipitation, we analyzed MBD2 and RNA polymerase II deposition and DNA methylation in HeLa cells on arrays representing 25,500 promoter regions. This first whole-genome mapping revealed the preferential localization of MBD2 near transcription start sites (TSSs), within the region analyzed, 7.5 kb upstream through 2.45 kb downstream of 5' transcription start sites. Probe by probe analysis correlated MBD2 deposition and DNA methylation. Motif analysis did not reveal specific sequence motifs; however, CCG and CGC sequences seem to be overrepresented. Nonrandom association (multiple correspondence analysis, p < 0.0001) between silent genes, DNA methylation and MBD2 binding was observed. The association between MBD2 binding and transcriptional repression weakened as the distance between binding site and TSS increased, suggesting that MBD2 represses transcriptional initiation. This hypothesis may represent a functional explanation for the preferential binding of MBD2 at methyl-CpG in TSS regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brooke-Spiegler syndrome, familial cylindromatosis, and familial trichoepithelioma are autosomal-dominant genetic predispositions for benign tumors of skin appendages caused by mutations in the CYLD gene localized on chromosome 16q12-q13. The encoded protein functions as ubiquitin-specific protease (UBP), which negatively regulates NF-kappaB and c-Jun N-terminal kinase (JNK) signaling. We investigated five families affected with these skin neoplasms and identified four premature stop codons and the novel missense mutation D681G in a family in which 11 of 12 investigated tumors were trichoepitheliomas. CYLD protein harboring this missense mutation had a significant reduced ability to inhibit TNF receptor-associated factor (TRAF)2- and TRAF6-mediated NF-kappaB activation, tumor necrosis factor-alpha (TNFalpha)-induced JNK signaling, and to deubiquitinate TRAF2. CYLD-D681G was coimmunoprecipitated by TRAF2, but was unable to cleave K63-linked polyubiquitin chains. Aspartic acid 681 is highly conserved in CYLD homologues and other members of the UBP family, but does not belong to the Cys and His boxes providing the CYLD catalytic triad (Cys601, His871, and Asp889). As reported previously, the homologous residue D295 of HAUSP/USP-7 forms a hydrogen bond with the C-terminal end of ubiquitin and is important for the enzymatic activity. These results underline that D681 in CYLD is required for cleavage of K63-linked polyubiquitin chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified new malaria vaccine candidates through the combination of bioinformatics prediction of stable protein domains in the Plasmodium falciparum genome, chemical synthesis of polypeptides, in vitro biological functional assays, and association of an antigen-specific antibody response with protection against clinical malaria. Within the predicted open reading frame of P. falciparum hypothetical protein PFF0165c, several segments with low hydrophobic amino acid content, which are likely to be intrinsically unstructured, were identified. The synthetic peptide corresponding to one such segment (P27A) was well recognized by sera and peripheral blood mononuclear cells of adults living in different regions where malaria is endemic. High antibody titers were induced in different strains of mice and in rabbits immunized with the polypeptide formulated with different adjuvants. These antibodies recognized native epitopes in P. falciparum-infected erythrocytes, formed distinct bands in Western blots, and were inhibitory in an in vitro antibody-dependent cellular inhibition parasite-growth assay. The immunological properties of P27A, together with its low polymorphism and association with clinical protection from malaria in humans, warrant its further development as a malaria vaccine candidate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate their role in receptor coupling to G(q), we mutated all basic amino acids and some conserved hydrophobic residues of the cytosolic surface of the alpha(1b)-adrenergic receptor (AR). The wild type and mutated receptors were expressed in COS-7 cells and characterized for their ligand binding properties and ability to increase inositol phosphate accumulation. The experimental results have been interpreted in the context of both an ab initio model of the alpha(1b)-AR and of a new homology model built on the recently solved crystal structure of rhodopsin. Among the twenty-three basic amino acids mutated only mutations of three, Arg(254) and Lys(258) in the third intracellular loop and Lys(291) at the cytosolic extension of helix 6, markedly impaired the receptor-mediated inositol phosphate production. Additionally, mutations of two conserved hydrophobic residues, Val(147) and Leu(151) in the second intracellular loop had significant effects on receptor function. The functional analysis of the receptor mutants in conjunction with the predictions of molecular modeling supports the hypothesis that Arg(254), Lys(258), as well as Leu(151) are directly involved in receptor-G protein interaction and/or receptor-mediated activation of the G protein. In contrast, the residues belonging to the cytosolic extensions of helices 3 and 6 play a predominant role in the activation process of the alpha(1b)-AR. These findings contribute to the delineation of the molecular determinants of the alpha(1b)-AR/G(q) interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The UL144 open reading frame found in clinical isolates of human CMV (HCMV) encodes a structural homologue of the herpesvirus entry mediator, a member of the TNFR superfamily. UL144 is a type I transmembrane glycoprotein that is expressed early after infection of fibroblasts; however, it is retained intracellularly. A YXXZ motif in the highly conserved cytoplasmic tail contributes to UL144 subcellular distribution. The finding that no known ligand of the TNF family binds UL144 suggests that its mechanism of action is distinct from other known viral immune evasion genes. Specific Abs to UL144 can be detected in the serum of a subset of HCMV seropositive individuals infected with HIV. This work establishes a novel molecular link between the TNF superfamily and herpesvirus that may contribute to the ability of HCMV to escape immune clearance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced brain apoptosis (neurons and glia) may be involved in major depression (MD) and schizophrenia (SZ), mainly through the activation of the intrinsic (mitochondrial) apoptotic pathway. In the extrinsic death pathway, pro-apoptotic Fas-associated death domain (FADD) adaptor and its non-apoptotic p-Ser194 FADD form have critical roles interacting with other death regulators such as phosphoprotein enriched in astrocytes of 15kDa (PEA-15) and extracellular signal-regulated kinase (ERK). The basal status of FADD (protein and messenger RNA (mRNA)) and the effects of psychotropic drugs (detected in blood/urine samples) were first assessed in postmortem prefrontal cortex of MD and SZ subjects (including a non-MD/SZ suicide group). In MD, p-FADD, but not total FADD (and mRNA), was increased (26%, n=24; all MD subjects) as well as p-FADD/FADD ratio (a pro-survival marker) in antidepressant-free MD subjects (50%, n=10). In contrast, cortical FADD (and mRNA), p-FADD, and p-FADD/FADD were not altered in SZ brains (n=21) regardless of antipsychotic medications (except enhanced mRNA in treated subjects). Similar negative results were quantified in the non-MD/SZ suicide group. In MD, the regulation of multifunctional PEA-15 (i.e., p-Ser116 PEA-15 blocks pro-apoptotic FADD and PEA-15 prevents pro-survival ERK action) and the modulation of p-ERK1/2 were also investigated. Cortical p-PEA-15 was not changed whereas PEA-15 was increased mainly in antidepressant-treated subjects (16-20%). Interestingly, cortical p-ERK1/2/ERK1/2 ratio was reduced (33%) in antidepressant-free when compared to antidepressant-treated MD subjects. The neurochemical adaptations of brain FADD (increased p-FADD and pro-survival p-FADD/FADD ratio), as well as its interaction with PEA-15, could play a major role to counteract the known activation of the mitochondrial apoptotic pathway in MD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

XIAP prevents apoptosis by binding to and inhibiting caspases, and this inhibition can be relieved by IAP antagonists, such as Smac/DIABLO. IAP antagonist compounds (IACs) have therefore been designed to inhibit XIAP to kill tumor cells. Because XIAP inhibits postmitochondrial caspases, caspase 8 inhibitors should not block killing by IACs. Instead, we show that apoptosis caused by an IAC is blocked by the caspase 8 inhibitor crmA and that IAP antagonists activate NF-kappaB signaling via inhibtion of cIAP1. In sensitive tumor lines, IAP antagonist induced NF-kappaB-stimulated production of TNFalpha that killed cells in an autocrine fashion. Inhibition of NF-kappaB reduced TNFalpha production, and blocking NF-kappaB activation or TNFalpha allowed tumor cells to survive IAC-induced apoptosis. Cells treated with an IAC, or those in which cIAP1 was deleted, became sensitive to apoptosis induced by exogenous TNFalpha, suggesting novel uses of these compounds in treating cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in PARK7/DJ-1 gene are associated to autosomal recessive early onset forms of Parkinson"s disease (PD). Although large gene deletions have been linked to a loss-of-function phenotype, the pathogenic mechanism of missense mutations is less clear. The L166P mutation causes misfolding of DJ-1 protein and its degradation. L166P protein may also accumulate into insoluble cytoplasmic aggregates with a mechanism facilitated by the E3 ligase TNF receptor associated factor 6 (TRAF6). Upon proteasome impairment L166P activates the JNK/p38 MAPK apoptotic pathway by its interaction with TRAF and TNF Receptor Associated Protein (TTRAP). When proteasome activity is blocked in the presence of wild-type DJ-1, TTRAP forms aggregates that are localized to the cytoplasm or associated to nucleolar cavities, where it is required for a correct rRNA biogenesis. In this study we show that in post-mortem brains of sporadic PD patients TTRAP is associated to the nucleolus and to Lewy Bodies, cytoplasmic aggregates considered the hallmark of the disease. In SH-SY5Y neuroblastoma cells, misfolded mutant DJ-1 L166P alters rRNA biogenesis inhibiting TTRAP localization to the nucleolus and enhancing its recruitment into cytoplasmic aggregates with a mechanism that depends in part on TRAF6 activity. This work suggests that TTRAP plays a role in the molecular mechanisms of both sporadic and familial PD. Furthermore, it unveils the existence of an interplay between cytoplasmic and nucleolar aggregates that impacts rRNA biogenesis and involves TRAF6

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatocellular Carcinoma (HCC) is a major healthcare problem, representing the third most common cause of cancer-related mortality worldwide. Chronic infections with Hepatitis B virus (HBV) and/or Hepatitis C virus (HCV) are the major risk factors for the development of HCC. The incidence of HBV -associated HCC is in decline as a result of an effective HBV vaccine; however, since an equally effective HCV vaccine has not yet been developed, there are 130 million HCV infected patients worldwide who are at a high-risk for developing HCC. Because reliable parameters and/or tools for the early detection of HCC among high-risk individuals are severely lacking, HCC patients are always diagnosed at a late stage where surgical solutions or effective treatment are not possible. Using urine as a non-invasive sample source, two different approaches (proteomic-based and genomic-based approaches) were pursued with the common goal of discovering potential biomarker candidates for the early detection of HCC among high-risk chronic HCV infected patients. Urine was collected from 106 HCV infected Egyptian patients, 32 of whom had already developed HCC and 74 patients who were diagnosed as HCC-free at the time of initial sample collection. In addition to these patients, urine samples were also collected from 12 healthy control individuals. Total urinary proteins, Trans-renal nucleic acid (Tr-NA) and microRNA (miRNA) were isolated from urine using novel methodologies and silicon carbide-loaded spin columns. In the first, "proteomic-based", approach, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to identify potential candidates from pooled urine samples. This was followed by validating relative expression levels of proteins present in urine among all the patients using quantitative real time-PCR (qRT-PCR). This approach revealed that significant over-expression of three proteins: DJ-1, Chromatin Assembly Factor-1 (CAF-1) and 11 Moemen Abdalla HCC Biomarkers Heat Shock Protein 60 (HSP60), were characteristic events among HCC-post HCV infected patients. As a single-based HCC biomarker, CAF-1 over-expression identified HCC among HCV infected patients with a specificity of 90%, sensitivity of 66% and with an overall diagnostic accuracy of 78%. Moreover, the CAF-lIHSP60 tandem identified HCC among HCV infected patients with a specificity of 92%, sensitivity of 61 % and with an overall diagnostic accuracy of 77%. In the second genomic-based approach, two different approaches were processed. The first approach was the miRNA-based approach. The expression levels of miRNAs isolated from urine were studied using the Illumina MicroRNA Expression Profiling Assay. This was followed by qRT-PCR-based validation of deregulated expression of identified miRNA candidates among all the patients. This approach shed the light on the deregulated expression of a number of miRNAs, which may have a role in either the development of HCC among HCV infected patients (i.e. miR-640, miR-765, miR-200a, miR-521 and miR-520) or may allow for a better understanding of the viral-host interaction (miR-152, miR-486, miR-219, miR452, miR-425, miR-154 and miR-31). Moreover, the deregulated expression of both miR-618 and miR-650 appeared to be a common event among HCC-post HCV infected patients. The results of the search for putative targets of these two miRNA suggested that miR-618 may be a potent oncogene, as it targets the tumor-suppressor gene Low density lipoprotein-related protein 12 (LPR12), while miR-650 may be a potent tumor-suppressor gene, as it is supposed to downregulate the TNF receptor-associated factor-4 (TRAF4) oncogene. The specificity of miR-618 and miR-650 deregulated expression patterns for the early detection of HCC among HCV infected patients was 68% and 58%, respectively, whereas the sensitivity was 64% and 72%, respectively. When the deregulated expression of both miRNAs was combined as a tandem biomarker, the specificity and the sensitivity were 75% and 58% respectively. 111 Moemen Abdalla HCC Biomarkers In the second, "Trans-renal nucleic acid-based", approach, the urinary apoptotic nucleic acid (uaNA) levels of 70ng/mL or more were found to be a good predictor of HCC among chronic HCV infected patients. The specificity and the sensitivity of this diagnostic approach were 76% and 86%, respectively, with an overall diagnostic value of 81 %. The uaNA levels positively correlated to HCC disease progression as monitored by epigenetic changes of a panel of eight tumor-suppressor genes (TSGs) using methylation-sensitive PCR. Moreover, the pairing of high uaNA levels (:::: 70 ng/mL) and CAF-1 over-expreSSIOn produced a highly specific (l 00%) multiple-based HCC biomarker with an acceptable sensitivity of 64%, and with a diagnostic accuracy of 82%. In comparison to the previous pairing, the uaNA levels (:::: 70 ng/mL) in tandem with HSP60 over-expression was less specific (89%) but highly sensitive (72%), resulting in a diagnostic accuracy of 64%. The specificities of miR-650 deregulated expression in combination with either high uaNA content or HSP 60 over-expression were 82% and 79%, respectively, whereas, the sensitivities of these combinations were 64% and 58%, respectively. The potential biomarkers identified in this study compare favorably with the diagnostic accuracy of the a-fetoprotein levels test, which has a specificity of 75%, sensitivity of 68% and an overall diagnostic accuracy of 70%. Here we present an intriguing study which shows the significance of using urine as a noninvasive sample source for the identification of promising HCC biomarkers. We have also introduced new techniques for the isolation of different urinary macromolecules, especially miRNA, from urine. Furthermore, we strongly recommend the potential biomarkers indentified in this study as focal points of any future research on HCC diagnosis. A larger testing pool will determine if their use is practical for mass population screening. This explorative study identified potential targets that merit further investigation for the development of diagnostically accurate biomarkers isolated from 1-2 mL urine samples that were acquired in a non-invasive manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le CD40 est un membre de la famille des récepteurs du facteur de nécrose tumorale ("Tumour necrosis factor", TNF), initialement identifié sur des cellules de carcinome de la vessie. L'interaction du CD40 avec son ligand (CD40L) est d'une importance cruciale pour le développement des cellules B et de la commutation d'isotype au cours de la réponse immunitaire acquise. L'expression du complexe CD40/CD40L était initialement cru d'être limiter aux cellules du système immunitaire, mais aujourd'hui il est bien connu que ce complexe est également exprimé sur les cellules du système circulatoire et vasculaire, et est impliqué dans diverses réactions inflammatoires; de sorte que le CD40L est maintenant considéré comme une molécule thrombo-inflammatoire prédictive des événements cardiovasculaires. Les plaquettes expriment constitutivement le CD40, alors que le CD40L n'est exprimé que suite à leur l'activation. Il est ensuite clivé en sa forme soluble (sCD40L) qui représente la majorité du sCD40L en circulation. Il fut démontré que le sCD40L influence l'activation plaquettaire mais son effet exact sur la fonction plaquettaire, ainsi que les mécanismes cellulaires et moléculaires sous-jacents à son action demeurent inconnus. Ainsi, ce projet a été entrepris dans le but d’adresser les objectifs spécifiques suivants: 1) évaluer les effets in vitro du sCD40L sur l'activation et l'agrégation plaquettaire; 2) identifier les récepteurs plaquettaires impliqués dans l’action du sCD40L; 3) élucider les voies signalétiques intracellulaires induits par le sCD40L; 4) évaluer les effets du sCD40L sur la formation de thrombus in vivo. Nous avons trouvé que le sCD40L augmente fortement l'activation et l'agrégation des plaquettes en réponse à de faibles concentrations d'agonistes. Les plaquettes humaines traitées avec une forme mutante du sCD40L qui n'interagit pas avec le CD40, et les plaquettes de souris déficientes en CD40 ne furent pas en mesure d'induire de telles réponses, indiquant que le récepteur principal du sCD40L au niveau des plaquettes est le CD40. En plus, nous avons identifié la présence de plusieurs membres de la famille du facteur associé du récepteur du TNF ("TNF receptor-associated factor", TRAF) dans les plaquettes et nous avons montré que seulement le TRAF2 s'associe avec le CD40 suite à la stimulation par le sCD40L. Nos résultats indiquent aussi que le sCD40L agisse sur les plaquettes au repos par l'entremise de deux voies signalétiques distinctes. La première voie implique l'activation de la petite GTPase Rac1 et de sa cible en aval, soit la protéine kinase p38 activée par le mitogène ("p38 mitogen-activated protein kinase", p38 MAPK ), menant au changement de forme plaquettaire et à la polymérisation de l'actine; alors que la deuxième voie implique l'activation de la cascade signalétique du NF-kB. Par ailleurs, à la suite d'une lésion artérielle induite par le chlorure de fer, le sCD40L exacerbe la formation de thrombus et l'infiltration leucocytaire au sein du thrombus dans les souris du type sauvage, mais pas chez les souris déficientes en CD40. En conclusion, ce projet a permis d'identifier pour la première fois deux voies signalétiques distinctes en aval du CD40 plaquettaire et a permis d'établir leur implication dans l'activation et l'agrégation plaquettaire en réponse au sCD40L. De manière plus importante, ce projet nous a permis d'établir un lien direct entre les niveaux élevés du sCD40L circulant et la formation de thrombus in vivo, tout en soulignant l'importance du CD40 dans ce processus. Par conséquent, l'axe CD40/CD40L joue un rôle important dans l'activation des plaquettes, les prédisposant à une thrombose accrue en réponse à une lésion vasculaire. Ces résultats peuvent expliquer en partie la corrélation entre les taux circulants élevés du sCD40L et l'incidence des maladies cardiovasculaires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The free radical theory of ageing postulates that age-associated neurodegeneration is caused by an imbalance between pro-oxidants and antioxidants resulting in oxidative stress. The current study showed regional variation in brain susceptibility to age-associated oxidative stress as shown by increased lipofuscin deposition and protein carbonyl levels in male rats of age 15-16 months compared to control ones (3-5 months). The hippocampus is the area most vulnerable to change compared to the cortex and cerebellum. However, proteasomal enzyme activity was not affected by age in any of the brain regions studied. Treatment with melatonin or coenzyme Q10 for 4 weeks reduced the lipofuscin content of the hippocampus and carbonyl level. However, both melatonin and coenzyme Q10 treatments inhibited beta-glutamyl peptide hydrolase activity. This suggests that these molecules can alter proteasome function independently of their antioxidant actions. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Seed storage proteins are a major source of dietary protein, and the content of such proteins determines both the quantity and quality of crop yield. Significantly, examination of the protein content in the seeds of crop plants shows a distinct difference between monocots and dicots. Thus, it is expected that there are different evolutionary patterns in the genes underlying protein synthesis in the seeds of these two groups of plants. Results: Gene duplication, evolutionary rate and positive selection of a major gene family of seed storage proteins (the 11S globulin genes), were compared in dicots and monocots. The results, obtained from five species in each group, show more gene duplications, a higher evolutionary rate and positive selections of this gene family in dicots, which are rich in 11S globulins, but not in the monocots. Conclusion: Our findings provide evidence to support the suggestion that gene duplication and an accelerated evolutionary rate may be associated with higher protein synthesis in dicots as compared to monocots.