989 resultados para TITANIUM COMPLEXES BEARING
Resumo:
Orthopyroxene-clinopyroxene-plagioclase needles and symplectite along the cleavage planes and grain boundaries of fluorine-bearing titanian-ferroan pargasite from the Highland Complex, Sri Lanka, are interpreted as evidence for dehydration melting at ultrahigh-temperature conditions. High Ti (up to 0.4 pfu) and F (XF up to 0.56) content in pargasite extends its stability to higher temperatures, and the composition indicates the dehydration melting reaction may take place at ultrahigh-temperatures (~950 °C) at a pressure around 10 kbar, close to peak metamorphic conditions. The increase of Ti content close to the grain boundaries and cleavage planes in pargasite indicates titanium partitioning from the melt during dehydration melting enhanced the stability of the mineral toward ultrahigh-temperature conditions. The REE content in the pargasite shows a similar behavior to that of titanium. The cores with no breakdown assemblage consist of low and flat REE concentrations with respect to the high and Eu-depleted rim. Clinopyroxene in symplectite and needle-shaped lamellae within the pargasite porphyroblasts have similar REE patterns with slightly low-concentrations relative to that of pargasite. In the breakdown assemblage, LREEs are partitioned mainly into plagioclase while the HREEs are partitioned into orthopyroxene. The REE enrichment in the pargasite rims signals their relative partitioning between pargasite rims and melt. Modeling of the partitioning of Ti and REEs associated with pargasite breakdown demonstrates that its stability is greatly enhanced at UHT conditions. This investigation implies that the stability of hydrous minerals such as amphibole can be extended to UHT conditions, and expands our knowledge of metamorphism in the lower crust.
Resumo:
Polyethylene is the most widely used synthetic polymer in the world. Most polyethylene is made with Ziegler-Natta catalysts. Polyethylenes for special applications are made with metallocenes, which are nowadays heavily patented. It is laborious therefore, to develop new metallocenes. The aim of this work was to investigate the feasibility of replacing the cyclopentadienyl ligands of metallocenes by aminopyridinato ligands without losing the good properties of the metallocenes, such as high activity and formation of linear polymer. The subject was approached by studying what kind of catalysts the metallocenes are and how they catalyze polyethylene. The polymerization behavior of metallocenes was examined by synthesizing a piperazino substituted indenyl zirconocene catalyst and comparing its polymerization data with that of the indenyl zirconocene catalyst. On the basis of their isolobality, it was thought that aminopyridinato ligands might replace cyclopentadienyl ligands. It was presumed that the polymerization mechanism and the active center in ethylene polymerization would be similar for aminopyridinato and metallocene catalysts. Titanium aminopyridinato complexes were prepared and their structures determined to clarify the relationship between structure of the catalyst precursor and polymerization results. The ethylene polymerization results for titanium 2-phenylaminopyridinato catalysts and titanocene catalysts were compared.
Resumo:
The reactivity of Grignard reagents towards imines in the presence of catalytic and stoichiometric amounts of titanium alkoxides is reported.Alkylation, reduction, and coupling of imines take place. Whereas reductive coupling is the major reaction in stoichiometric reactions, alkylation is favored in catalytic reactions. Mechanistic studies clearly indicate that intermediates involved in the two reactions are different. Catalytic reactions involve a metal alkyl complex. This has been confirmed by reactions of deuterium-labeled substrates and different alkylating agents. Under the stoichiometric conditions, however, titanium olefin complexes are formed through reductive elimination, probably through a multinuclear intermediate.
Resumo:
Several covalently linked bisporphyrin systems, free-base (H2P---H2P), hybrid bisporphyrins (Zn---H2P) and Zn(II) dimers (ZnP---ZnP) and their 1:1 molecular complexes with sym 1,3,5-trinitrobenzene have been investigated by optical absorption and emission, and magnetic resonance spectroscopic methods. In these systems, two porphyrin units are linked singly through one of the meso aryl groups via ether linkages of variable length. The bisporphyrins cooperatively bind a molecule of a ?-acceptor; 1,3,5-trinitrobenzene (TNB). The binding constant values vary with interchromophore separation. Maximum binding is observed in the bisporphyrin bearing a two-ether covalent linkage. It is found that TNB quenches the fluorescence of the two porphyrine units in a selective manner. It is suggested that a critical distance between the two porphyrin units is necessary for the observance of maximum cooperative intermolecular binding with an acceptor.
Resumo:
Several substituted anilines were converted to binary salts with L-tartaric acid. Second harmonic generation (SHG) activities of these salts were determined. The crystal packing in two structures, (i) m-anisidinium-L-tartrate monohydrate (i) and (ii) p-toluidinium-L-tartrate (2), studied using X-ray diffraction demonstrates that extensive hydrogen bonding steers the components into a framework which has a direct bearing on the SHG activity
Resumo:
Novel, volatile, stable, oxo-β-ketoesterate complexes of titanium, whose synthesis requires only an inert atmosphere, as opposed to a glove box, have been developed. Using one of the complexes as the precursor, thin films of TiO2 have been deposited on glass substrates by metalorganic chemical vapor deposition (MOCVD) at temperatures ranging from 400°C to 525°C and characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. All the films grown in this temperature range are very smooth; those grown above 480°C consist of nearly monodisperse, nanocrystals of the anatase phase. Optical studies show the bandgaps in the range 3.4–3.7 eV for films grown at different temperatures. Thin films of anatase TiO2 have also been grown by spin-coating technique using another ketoesterate complex of titanium, demonstrating that the newly developed complexes can be successfully used for thin film growth by various chemical routes.
Resumo:
Palladium and platinum dichloride complexes of a series of symmetrically and unsymmetrically substituted 25,26;27,28-dibridged p-tert-butyl-calix[4]arene bisphosphites in which two proximal phenolic oxygen atoms of p-tert-butyl-or p-H-calix[4]arene are connected to a P(OR) ( R = substituted phenyl) moiety have been synthesized. The palladium dichloride complexes of calix[4]arene bisphosphites bearing sterically bulky aryl substituents undergo cyclometalation by C-C or C-H bond scission. An example of cycloplatinated complex is also reported. The complexes have been characterized by NMR spectroscopic and single crystal X-ray diffraction studies. During crystallization of the palladium dichloride complex of a symmetrically substituted calix[4]arene bisphosphite in dichloromethane, insertion of oxygen occurs into the Pd-P bond to give a P,O-coordinated palladium dichloride complex. The calix[4]arene framework in these bisphosphites and their metal complexes adopt distorted cone conformation; the cone conformation is more flattened in the metal complexes than in the free calix[4]arene bisphosphites. Some of these cyclometalated complexes proved to be active catalysts for Heck and Suzuki C-C cross-coupling reactions but, on an average, the yields are only modest. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Transient protein-protein interactions play crucial roles in all facets of cellular physiology. Here, using an analysis on known 3-D structures of transient protein-protein complexes, their corresponding uncomplexed forms and energy calculations we seek to understand the roles of protein-protein interfacial residues in the unbound forms. We show that there are conformationally near invariant and evolutionarily conserved interfacial residues which are rigid and they account for similar to 65% of the core interface. Interestingly, some of these residues contribute significantly to the stabilization of the interface structure in the uncomplexed form. Such residues have strong energetic basis to perform dual roles of stabilizing the structure of the uncomplexed form as well as the complex once formed while they maintain their rigid nature throughout. This feature is evolutionarily well conserved at both the structural and sequence levels. We believe this analysis has general bearing in the prediction of interfaces and understanding molecular recognition.
Resumo:
The reaction of the low valent metallocene(II) sources Cp'Ti-2(eta(2)-Me3SiC2SiMe3) (Cp' = eta(5)-cyclopentadienyl, 1a or eta(5)-pentamethylcyclopentadienyl, 1b) with different carbodiimide substrates RN=C=NR' 2-R-R' (R = t-Bu; R' = Et; R = R' = i-Pr; t-Bu; SiMe3; 2,4,6-Me-C6H2 and 2,6-i-Pr-C6H3) was investigated to explore the frontiers of ring strained, unusual four-membered heterometallacycles 5-R. The product complexes show dismantlement, isomerization, or C-C coupling of the applied carbodiimide substrates, respectively, to form unusual mono-, di-, and tetranuclear titanium(III) complexes. A detailed theoretical study revealed that the formation of the unusual complexes can be attributed to the biradicaloid nature of the unusual four-membered heterometallacycles 5-R, which presents an intriguing situation of M-C bonding. The combined experimental and theoretical study highlights the delicate interplay of electronic and steric effects in the stabilization of strained four-membered heterometallacycles, accounting for the isolation of the obtained complexes.
Resumo:
We report here the synthesis and characterization of a few phenolate-based ligands bearing tert- amino substituent and their Zn(II) and Cu(II) metal complexes. Three mono/binuclear Zn(II) and Cu(II) complexes Zn(L1)(H2O)].CH3OH.H2O (1) (H (2) L1 = 6,6(')-(((2-dimethylamino)ethylazanediyl)bis(methylene))bis(2, 4-dimethylphenol), Zn-2(L2)(2)] (2) (H (2) L2 = 2,2(')-(((2-dimethylamino)ethyl)azanediyl)bis(methylene)bis(4- methylphenol) and Cu-2(L3)(2).CH2 Cl-2] (3) (H (2) L3 = (6,6(')-(((2-(diethylamino)ethyl)azanediyl)bis(methylene)) bis(methylene))bis(2,4-dimethylphenol) were synthesized by using three symmetrical tetradendate ligands containing N2O2 donor sites. These complexes are characterized by a variety of techniques including; elemental analysis, mass spectrometry, H-1, C-13 NMR spectroscopic and single crystal X-ray analysis. The new complexes have been tested for the phosphotriesterase (PTE) activity with the help of P-31 NMR spectroscopy. The P-31 NMR studies show that mononuclear complex Zn(L1)(H2O)].CH3OH.H2O (1) can hydrolyse the phosphotriester i.e., p-nitrophenyl diphenylphosphate (PNPDPP), more efficiently than the binuclear complexes Zn-2(L2)(2)] (2) and Cu-2(L3)(2).CH2Cl2] (3). The mononuclear Zn(II) complex (1) having one coordinated water molecule exhibits significant PTE activity which may be due to the generation of a Zn(II)-bound hydroxide ion during the hydrolysis reactions in CHES buffer at pH 9.0.
Resumo:
Oxidovanadium(IV) complexes VO(py-aebmz)(B)]Cl (1, 2) and VO(napth-py-aebmz)(cur)]Cl 3; py-aebmz = 2-(1H-benzimidazol-2-yl)-N-(pyridin-2-ylmethylene)ethanamine, HB = acetylacetone (Hacac, 1) and curcumin (Hcur, 2), napth-py-aebmz = naphthalimide conjugated to py-aebmz ] have been prepared, characterized and their photoinduced DNA cleavage activities and photocytotoxicities studied. Complexes 1-3 each exhibited an irreversible cyclic voltammetric response of the V-IV/V-III redox couple at around -0.85 V versus SCE in dmf/0.1 M tbap. The complexes showed DNA photocleavage activity in visible light of 454, 530 and 647 nm through hydroxyl radical and singlet oxygen pathways. Fluorescence microscopy data suggest mitochondrial localization of complex 3 bearing a naphthalimide with a two-fold increase in photocytotoxicity in HaCaT cells with an IC50 value of 6.3 M and a three-fold increase in MCF-7 cells with an IC50 of 5.4 M compared with complex 2. Both 2 and 3 were non-toxic in the dark.
Resumo:
The first hyperpolarizability (beta) of a series of half-sandwich Ru complexes with a mercaptobenzothiazole ligand bearing a halogen atom substitution in the para-position has been investigated by hyper-Rayleigh scattering and quantum chemical calculations. The heterocyclic ligand with a bromine atom in the para position makes it a very good donor and charge flows to the Ru center enhancing the beta value of the complex by a factor of 2 compared to the complex with the ligand without the halogen substitution. The resonance (+R) and the inductive (-I) effects exerted by the halogen atom in the para position push electrons in opposing directions in the complex. For the Br and Cl atoms the resonance effect dominates which enables the ligand to donate electrons to the metal center thereby increasing the hyperpolarizability whereas for the fluorine atom, the inductive effect is dominant which reduces the charge flow to the metal and the hyperpolarizability drops even below that of the unsubstituted ligand. This unprecedented halogen atom effect on beta of metal complexes is reported. (C) 2015 Elsevier By. All rights reserved.
Resumo:
The synthesis and X-ray diffraction study of bis(pentamethylcyclopentadienyl) ethylene titanium (I) are reported. This complex represents the first example of an isolable ethylene adduct of a group IV metal, a key intermediate in Ziegler-Natta olefin polymerization schemes. While treatment of I with ethylene leads to only traces of polymer after months, I participates in a wide range of stoichiometric and catalytic reactions. These include the catalytic conversion of ethylene specifically to butadiene and ethane and the catalytic isomerization of alkenes. Detailed studies have been carried out on the stoichiometric reactions of I with nitriles and alkynes. At low temperatures, nitriles react to form metallacycloimine species which more slowly undergo a formal 1,3-hydrogen shift to generate metallacycloeneamines. The lowest energy pathway for this rearrangement is an intramolecular hydrogen shift which is sensitive to the steric bulk of the R substituent. The reactions of I with alkynes yield metallacyclopentene complexes with high regioisomer selectivity. Carbonylation of the metallacyclopentene (η-C5Me55)2TiC(CH3)=C(CH3)CH2 under relatively mild conditions cleanly produces the corresponding cyclopentenone and [C5(CH3)5]2Ti(CO)2. Compounds derived from CO2 and acetaldehyde have also been isolated.
The synthesis and characterization of bis-(η-pentamethylcyclopentadienyl) niobium(III) tetrahydroborate (II) are described and a study of its temperature-dependent proton NMR spectroscopic behavior is reported. The complex is observed to undergo a rapid intramolecular averaging process at elevated temperatures. The free energy of activation, ΔG≠ = 16.4 ± 0.4 kcal/mol, is calculated. The reinvestigation of a related compound, bis(η-cyclopentadienyl)niobium(III) tetrahydroborate, established ΔG≠ = 14.6 ± 0.2 kcal/mol for the hydrogen exchange process. The tetrahydroborate complex, II reacts with pyridine and dihydrogen to yield (η-C5Me55)2NbH3 (III). The reactivity of III with CO and ethylene is reported.
Resumo:
Terphenyl diphosphines bearing pendant ethers were prepared to provide mechanistic insight into the mechanism of activation of aryl C–O bonds with Group 9 and Group 10 transition metals. Chapters 2 and 3 of this dissertation describe the reactivity of compounds supported by the model phosphine and extension of this chemistry to heterogenous C–O bond activation.
Chapter 2 describes the synthesis and reactivity of aryl-methyl and aryl-aryl model systems. The metallation of these compounds with Ni, Pd, Pt, Co, Rh, and Ir is described. Intramolecular bond activation pathways are described. In the case of the aryl-methyl ether, aryl C–O bond activation was observed only for Ni, Rh, and Ir.
Chapter 3 outlines the reactivity of heterogenous Rh and Ir catalysts for aryl ether C–O bond cleavage. Using Rh/C and an organometallic Ir precursor, aryl ethers were treated with H2 and heat to afford products of hydrogenolysis and hydrogenation. Conditions were modified to optimize the yield of hydrogenolysis product. Hydrogenation could not be fully suppressed in these systems.
Appendix A describes initial investigations of bisphenoxyiminoquinoline dichromium compounds for selective C2H4 oligomerization to afford α-olefins. The synthesis of monometallic and bimetallic Cr complexes is described. These compounds are compared to literature examples and found to be less active and non-selective for production of α-olefins.
Appendix B describes the coordination chemistry of terphenyl diphosphines, terphenyl bisphosphinophenols, and biphenyl phosphinophenols proligands with molybdenum, cobalt, and nickel. Since their synthesis, terphenyl diphosphine molybdenum compounds have been reported to be good catalysts for the dehydrogenation of ammonia borane. Biphenyl phosphinophenols are demonstrated provide both phosphine and arene donors to transition metals while maintaining a sterically accessible coordination sphere. Such ligands may be promising in the context of the activation of other small molecules.
Appendix C contains relevant NMR spectra for the compounds presented in the preceding sections.