148 resultados para THERMOGENESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major processes discussed below are protein turnover (degradation and synthesis), degradation into urea, or conversion into glucose (gluconeogenesis, Figure 1). Daily protein turnover is a dynamic process characterized by a double flux of amino acids: the amino acids released by endogenous (body) protein breakdown can be reutilized and reconverted to protein synthesis, with very little loss. Daily rates of protein turnover in humans (300 to 400 g per day) are largely in excess of the level of protein intake (50 to 80 g per day). A fast growing rate, as in premature babies or in children recovering from malnutrition, leads to a high protein turnover rate and a high protein and energy requirement. Protein metabolism (synthesis and breakdown) is an energy-requiring process, dependent upon endogenous ATP supply. The contribution made by whole-body protein turnover to the resting metabolic rate is important: it represents about 20 % in adults and more in growing children. Metabolism of proteins cannot be disconnected from that of energy since energy balance influences net protein utilization, and since protein intake has an important effect on postprandial thermogenesis - more important than that of fats or carbohydrates. The metabolic need for amino acids is essentially to maintain stores of endogenous tissue proteins within an appropriate range, allowing protein homeostasis to be maintained. Thanks to a dynamic, free amino acid pool, this demand for amino acids can be continuously supplied. The size of the free amino acid pool remains limited and is regulated within narrow limits. The supply of amino acids to cover physiological needs can be derived from 3 sources: 1. Exogenous proteins that release amino acids after digestion and absorption 2. Tissue protein breakdown during protein turnover 3. De novo synthesis, including amino acids (as well as ammonia) derived from the process of urea salvage, following hydrolysis and microflora metabolism in the hind gut. When protein intake surpasses the physiological needs of amino acids, the excess amino acids are disposed of by three major processes: 1. Increased oxidation, with terminal end products such as CO₂ and ammonia 2. Enhanced ureagenesis i. e. synthesis of urea linked to protein oxidation eliminates the nitrogen radical 3. Gluconeogenesis, i. e. de novo synthesis of glucose. Most of the amino groups of the excess amino acids are converted into urea through the urea cycle, whereas their carbon skeletons are transformed into other intermediates, mostly glucose. This is one of the mechanisms, essential for life, developed by the body to maintain blood glucose within a narrow range, (i. e. glucose homeostasis). It includes the process of gluconeogenesis, i. e. de novo synthesis of glucose from non-glycogenic precursors; in particular certain specific amino acids (for example, alanine), as well as glycerol (derived from fat breakdown) and lactate (derived from muscles). The gluconeogenetic pathway progressively takes over when the supply of glucose from exogenous or endogenous sources (glycogenolysis) becomes insufficient. This process becomes vital during periods of metabolic stress, such as starvation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adaptation of 24-h energy expenditure (24-h EE) to seasonal variations in food availability was studied, by using a respiration chamber, in 18 rural Gambian men on three occasions: period 1--at the end of the rainy season, which is characterized by low food availability; period 2--during the nutritionally favorable dry season; and period 3--at the onset of the following rainy season. From periods 1 to 2 body weight increased by 2.8 +/- 0.4 kg, and a rise in 24-h EE was observed (from 8556 +/- 212 kJ/d to 9166 +/- 224 kJ/d), which was correlated to weight change (r = 0.73, P less than 0.001). During period 3, 24-h EE averaged 8740 +/- 194 kJ/d. Diet-induced thermogenesis increased significantly from periods 1 to 2 (5.9 +/- 0.5% to 8.2 +/- 0.8%) and subsequently decreased to 3.6 +/- 0.6% during period 3. In rural Gambian men, metabolic adaptations in response to seasonal changes in food availability are reflected by a decrease in body weight, mainly manifested by a loss of fat-free mass accompanied by a decreased 24-h EE and a lowered diet-induced thermogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The combination of oleoyl-estrone (OE) and a selective b3-adrenergic agonist (B3A; CL316,243) treatment in rats results in a profound and rapid wasting of body reserves (lipid). Methods: In the present study we investigated the effect of OE (oral gavage) and/or B3A (subcutaneous constant infusion) administration for 10 days to overweight male rats, compared with controls, on three distinct white adipose tissue (WAT) sites: subcutaneous inguinal, retroperitoneal and epididymal. Tissue weight, DNA (and, from these values cellularity), cAMP content and the expression of several key energy handling metabolism and control genes were analyzed and computed in relation to the whole site mass. Results: Both OE and B3A significantly decreased WAT mass, with no loss of DNA (cell numbers). OE decreased and B3A increased cAMP. Gene expression patterns were markedly different for OE and B3A. OE tended to decrease expression of most genes studied, with no changes (versus controls) of lipolytic but decrease of lipogenic enzyme genes. The effects of B3A were widely different, with a generalized increase in the expression of most genes, including the adrenergic receptors, and, especially the uncoupling protein UCP1. Discussion: OE and B3A, elicit widely different responses in WAT gene expression, end producing similar effects, such as shrinking of WAT, loss of fat, maintenance of cell numbers. OE acted essentially on the balance of lipolysislipogenesis and the blocking of the uptake of substrates; its decrease of synthesis favouring lipolysis. B3A induced a shotgun increase in the expression of most regulatory systems in the adipocyte, an effect that in the end favoured again the loss of lipid; this barely selective increase probably produces inefficiency, which coupled with the increase in UCP1 expression may help WAT to waste energy through thermogenesis. Conclusions: There were considerable differences in the responses of the three WAT sites. OE in general lowered gene expression and stealthily induced a substrate imbalance. B3A increasing the expression of most genes enhanced energy waste through inefficiency rather than through specific pathway activation. There was not a synergistic effect between OE and B3A in WAT, but their combined action increased WAT energy waste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rats chronically cannulated in the carotid artery and the muscular branch of the femoral vein were subjected to a cold (4 °C) environment for up to 2 h. The changes in blood flow (measured with 46Sc microspheres) and arterio-venous differences in the concentrations of glucose, lactate, triacylglycerols and amino acids allowed the estimation of substrate (and energy) balances across the hindleg. Mean glucose uptake was 0.28mmol min21, mean lactate release was 0.33mmol min21 and the free fatty acid basal release of 0.31mmol min21 was practically zero upon exposure to the cold; the initial uptake of triacylglycerols gave place to a massive release following exposure. The measurement of PO·, PCO· and pH also allowed the estimation of oxygen, CO2 and bicarbonate balances and respiratory quotient changes across the hindleg. The contribution of amino acids to the energy balance of the hindleg was assumed to be low. These data were used to determine the sources of energy used to maintain muscle shivering with time. Three distinct phases were observed in hindleg substrate utilization. (1) The onset of shivering, with the use of glucose/glycogen and an increase in lactate efflux. Lipid oxidation was practically zero (respiratory quotient near 1), but the uptake of triacylglycerols from the blood remained unchanged. (2) A substrate-energy shift, with drastically decreased use of glucose/glycogen, and of lactate efflux; utilization of triacylglycerol as practically the sole source of energy (respiratory quotient approximately 0.7); decreasing uptake of triacylglycerol and increased tissue lipid mobilization. (3) The onset of a new heat-homeostasis setting for prolonged cold-exposure, with maintenance of muscle energy and heat production based on triacylglycerol utilization and efflux from the hindleg (muscle plus skin and subcutaneous adipose masses) contributing energy to help sustain heat production by the core organs and surrounding brown adipose tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After birth, the body shifts from glucose as primary energy substrate to milk-derived fats, with sugars from lactose taking a secondary place. At weaning, glucose recovers its primogeniture and dietary fat role decreases. In spite of human temporary adaptation to a high-fat (and sugars and protein) diet during lactation, the ability to thrive on this type of diet is lost irreversibly after weaning. We could not revert too the lactating period metabolic setting because of different proportions of brain/muscle metabolism in the total energy budget, lower thermogenesis needs and capabilities, and absence of significant growth in adults. A key reason for change was the limited availability of foods with high energy content at weaning and during the whole adult life of our ancestors, which physiological adaptations remain practically unchanged in our present-day bodies. Humans have evolved to survive with relatively poor diets interspersed by bouts of scarcity and abundance. Today diets in many societies are largely made up from choice foods, responding to our deeply ingrained desire for fats, protein, sugars, salt etc. Consequently our diets are not well adjusted to our physiological needs/adaptations but mainly to our tastes (another adaptation to periodic scarcity), and thus are rich in energy roughly comparable to milk. However, most adult humans cannot process the food ingested in excess because our cortical-derived craving overrides the mechanisms controlling appetite. This is produced not because we lack the biochemical mechanisms to use this energy, but because we are unprepared for excess, and wholly adapted to survive scarcity. The thrifty mechanisms compound the effects of excess nutrients and damage the control of energy metabolism, developing a pathologic state. As a consequence, an overflow of energy is generated and the disease of plenty develops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat) intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia, which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation, helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis, hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may result in difficulties in the disposal of glucose, eliciting inflammation and the development of the metabolic syndrome

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY :Non-alcoholic fatty liver disease (NAFLD) is characterized by an elevated intra- hepatocellular lipid (IHCL) concentration (> 5%). The incidence of NAFLD is frequently increased in obese patients, and is considered to be the hepatic component of the metabolic syndrome. The metabolic syndrome, also characterized by visceral obesity, altered glucose homeostasis, insulin resistance, dyslipidemia, and high blood pressure, represents actually a major public health burden. Both dietary factors and low physical activity are involved in the development of the metabolic syndrome. ln animals and healthy humans, high-fat or high-fructose diets lead to the development of several features of the metabolic syndrome including increased intrahepatic lipids and insulin resistance. ln contrast the effects of dietary protein are less well known, but an increase in protein intake has been suggested to exert beneficial effects by promoting weight loss and improving glucose homeostasis in insulin-resistant patients. Increased postprandial thermogenesis and enhanced satiety after protein ingestion may be both involved. The effects of dietary protein on hepatic lipids have been poorly investigated in humans, but preliminary studies in rodents have shown a reduction of hepatic lipids in carbohydrate fed rats and in obese rats. ln this context this work aimed at investigating the metabolic effects of dietary protein intake on hepatic lipid metabolism and glucose homeostasis in humans. The modulation by dietary proteins of exogenous lipid oxidation, net lipid oxidation, hepatic beta-oxidation, triglycerides concentrations, whole-body energy expenditure and glucose tolerance was assessed in the fasting state and in postprandial states. Measurements of IHCL were performed to quantify the amount of triglycerides in the liver. ln an attempt to cover all these metabolic aspects under different point of views, these questions were addressed by three protocols involving various feeding conditions. Study I addressed the effects of a 4-day hypercaloric high-fat high-protein diet on the accumulation of fat in the liver (IHCL) and on insulin sensitivity. Our findings indicated that a high protein intake significantly prevents intrahepatic fat deposition induced by a short- term hypercaloric high-fat diet, adverse effects of which are presumably modulated at the liver level.These encouraging results led us to conduct the second study (Study ll), as we were also interested in a more clinical approach to protein administration and especially if increased protein intakes might be of benefit for obese patients. Therefore the effects of one-month whey protein supplementation on IHCL, insulin sensitivity, lipid metabolism, glucose tolerance and renal function were assessed in obese women. Results showed that whey protein supplementation reduces hepatic steatosis and improves the plasma lipid profile in obese patients, without adverse effects on glucose tolerance or creatinine clearance. However since patients were fed ud-libitum, it remains possible that spontaneous carbohydrate and fat intakes were reduced due to the satiating effects of protein. The third study (Study lll) was designed in an attempt to deepen our comprehension about the mechanisms involved in the modulation of IHCL. We hypothesized that protein improved lipid metabolism and, therefore, we evaluated the effects of a high protein meal on postprandial lipid metabolism and glucose homeostasis after 4-day on a control or a protein diet. Our results did not sustain the hypothesis of an increased postprandial net lipid oxidation, hepatic beta oxidation and exogenous lipid oxidation. Four days on a high-protein diet rather decreased exogenous fat oxidation and enhanced postprandial triglyceride concentrations, by impairing probably chylomicron-TG clearance. Altogether the results of these three studies suggest a beneficial effect of protein intake on the reduction in lHCL, and clearly show that supplementation of proteins do not reduce IHCL by stimulating lipid metabolism, e.g. whole body fat oxidation, hepatic beta oxidation, or exogenous fat oxidation. The question of the effects of high-protein intakes on hepatic lipid metabolism is still open and will need further investigation to be elucidated. The effects of protein on increased postprandial lipemia and lipoproteins kinetics have been little investigated so far and might therefore be an interesting research question, considering the tight relationship between an elevation of plasmatic TG concentrations and the increased incidence of cardiovascular diseases.Résumé :La stéatose hépatique non alcoolique se caractérise par un taux de lipides intra-hépatiques élevé, supérieur à 5%. L'incidence de la stéatose hépatique est fortement augmentée chez les personnes obèses, ce qui mène à la définir comme étant la composante hépatique du syndrome métabolique. Ce syndrome se définit aussi par d'autres critères tels qu'obésité viscérale, altération de l'homéostasie du glucose, résistance à l'insuline, dyslipidémie et pression artérielle élevée. Le syndrome métabolique est actuellement un problème de santé publique majeur.Tant une alimentation trop riche et déséquilibrée, qu'une faible activité physique, semblent être des causes pouvant expliquer le développement de ce syndrome. Chez l'animal et le volontaire sain, des alimentations enrichies en graisses ou en sucres (fructose) favorisent le développement de facteurs associés au syndrome métabolique, notamment en augmentant le taux de lipides intra-hépatiques et en induisant le développement d'une résistance à l'insuline. Par ailleurs, les effets des protéines alimentaires sont nettement moins bien connus, mais il semblerait qu'une augmentation de l'apport en protéines soit bénéfique, favorisant la perte de poids et l'homéostasie du glucose chez des patients insulino-résistants. Une augmentation de la thermogenese postprandiale ainsi que du sentiment de satiété pourraient en être à l'origine.Les effets des protéines sur les lipides intra-hépatiques chez l'homme demeurent inconnus à ce jour, cependant des études préliminaires chez les rongeurs tendent à démontrer une diminution des lipides intra hépatiques chez des rats nourris avec une alimentation riche en sucres ou chez des rats obèses.Dans un tel contexte de recherche, ce travail s'est intéressé à l'étude des effets métaboliques des protéines alimentaires sur le métabolisme lipidique du foie et sur l'homéostasie du glucose. Ce travail propose d'évaluer l'effet des protéines alimentaires sur différentes voies métaboliques impliquant graisses et sucres, en ciblant d'une part les voies de l'oxydation des graisses exogènes, de la beta-oxydation hépatique et de l'oxydation nette des lipides, et d'autre part la dépense énergétique globale et l'évolution des concentrations sanguines des triglycérides, à jeun et en régime postprandial. Des mesures des lipides intra-hépatiques ont aussi été effectuées pour permettre la quantification des graisses déposées dans le foie.Dans le but de couvrir l'ensemble de ces aspects métaboliques sous différents angles de recherche, trois protocoles, impliquant des conditions alimentaires différentes, ont été entrepris pour tenter de répondre à ces questions. La première étude (Etude I) s'est intéressée aux effets d'u.ne suralimentation de 4 jours enrichie en graisses et protéines sur la sensibilité à l'insuline et sur l'accumulation de graisses intra-hépatiques. Les résultats ont démontré que l'apport en protéines prévient l'accumulation de graisses intra-hépatiques induite par une suralimentation riche en graisses de courte durée ainsi que ses effets délétères probablement par le biais de mécanismes agissant au niveau du foie. Ces résultats encourageants nous ont conduits à entreprendre une seconde étude (Etude ll) qui s'intéressait à l'implication clinique et aux bénéfices que pouvait avoir une supplémentation en protéines sur les graisses hépatiques de patients obèses. Ainsi nous avons évalué pendant un mois de supplémentation l'effet de protéines de lactosérum sur le taux de graisses intrahépatiques, la sensibilité à l'insuline, la tolérance au glucose, le métabolisme des graisses et la fonction rénale chez des femmes obèses. Les résultats ont été encourageants; la supplémentation en lactosérum améliore la stéatose hépatique, le profil lipidique des patientes obèses sans pour autant altérer la tolérance au glucose ou la clairance de la créatinine. L'effet satiétogene des protéines pourrait aussi avoir contribué à renforcer ces effets. La troisième étude s'est intéressée aux mécanismes qui sous-tendent les effets bénéfiques des protéines observés dans les 2 études précédentes. Nous avons supposé que les protéines devaient favoriser le métabolisme des graisses. Par conséquent, nous avons cherché a évaluer les effets d'un repas riche en protéines sur la lipémie postprandiale et l'homéostasie glucidique après 4 jours d'alimentation contrôlée soit isocalorique et équilibrée, soit hypercalorique enrichie en protéines. Les résultats obtenus n'ont pas vérifié l'hypothèse initiale ; ni une augmentation de l'oxydation nette des lipides, ni celle d'une augmentation de la béta-oxydation hépatique ou de l'oxydation d'un apport exogène de graisses n'a pu étre observée. A contrario, il semblerait même plutôt que 4 jours d'a]irnentation hyperprotéinée inhibent le métabolisme des graisses et augmente les concentrations sanguines de triglycérides, probablement par le biais d'une clairance de chylornicrons altérée. Globalement, les résultats de ces trois études nous permettent d'attester que les protéines exercent un effet bénéfique en prévenant le dépot de graisses intra-hépatiques et montrent que cet effet ne peut être attribué à une stimulation du métabolisme des lipides via l'augmentation des oxydations des graisses soit totales, hépatiques, ou exogènes. La question demeure en suspens à ce jour et nécessite de diriger la recherche vers d'autres voies d'exploration. Les effets des protéines sur la lipémie postprandiale et sur le cinétique des lipoprotéines n'a que peu été traitée à ce jour. Cette question me paraît néanmoins importante, sachant que des concentrations sanguines élevées de triglycérides sont étroitement corrélées à une incidence augmentée de facteurs de risque cardiovasculaire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermogenic response to a 100 g oral glucose load was studied by indirect calorimetry in 13 older persons (age range, 38-68 years) and compared with that of 16 young matched controls of similar body weight (age range, 19-30 years). The glucose-induced thermogenesis measured over 180 min and expressed as a per cent of the energy content of the glucose load was found to be reduced in the older subjects, i.e., 5.8 +/- 0.3 per cent vs 8.6 +/- 0.7 per cent, P less than 0.002). This was also accompanied by a significant decrease in the glucose oxidation rate when averaged over the same three-hour period following the glucose load, i.e., 153 mg/min vs 213 mg/min in the control subjects (P less than 0.001) despite a similar time course of glycemia. This study suggests that the thermogenic response to an oral glucose load is blunted in older people, and this may represent an additional factor that contributes to the decreased energy requirement with age and therefore to the increased propensity to obesity if energy intake is not adjusted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Components of daily energy expenditure were measured serially by whole-body calorimetry in Gambian women before pregnancy and at 6, 12, 18, 24, 30, and 36 wk gestation. Weight gain was (mean +/- SD) 6.8 +/- 2.8 kg, fat deposition was 2.0 +/- 2.5 kg and lean tissue deposition was 5.0 +/- 2.5 kg. Basal metabolic rate (BMR) was depressed during the first 18 wk of gestation, causing total cumulative maintenance costs by week 36 to be 8.4 MJ. Individual responses to pregnancy correlated with changes in body mass (36 wk: delta BMR vs delta weight; r = 0.60, P < 0.01 delta BMR vs delta LBM; r = 0.62, P < 0.01). There was no significant increase in the cost of treadmill exercise (0% slope: F = 0.71, P = 0.64; 5% slope: F = 1.97, P = 0.10), 24-h energy expenditure (F = 0.72, P = 0.64), activity or diet-induced thermogenesis (F = 1.02, P = 0.43), during pregnancy in spite of body weight gain. Total metabolic costs over 36 wk were 144 MJ (fetus 43 MJ, fat deposition 92 MJ, cumulative maintenance costs 8.4 MJ). These were far lower than reported for well-nourished Western populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plac8 belongs to an evolutionary conserved family of proteins, mostly abundant in plants where they control fruit weight through regulation of cell number. In mice, Plac8 is expressed both in white and brown adipose tissues and we previously showed that Plac8(-/-) mice develop late-onset obesity, with abnormal brown fat differentiation and reduced thermogenic capacity. We also showed that in brown adipocytes, Plac8 is an upstream regulator of C/EBPβ expression. Here, we first assessed the role of Plac8 in white adipogenesis in vitro. We show that Plac8 is induced early after induction of 3T3-L1 adipocytes differentiation, a process that is prevented by Plac8 knockdown; similarly, embryonic fibroblasts obtained from Plac8 knockout mice failed to form adipocytes upon stimulation of differentiation. Knockdown of Plac8 in 3T3-L1 was associated with reduced expression of C/EBPβ, Krox20, and Klf4, early regulators of the white adipogenic program, and we show that Plac8 could transactivate the C/EBPβ promoter. In vivo, we show that absence of Plac8 led to increased white fat mass with enlarged adipocytes but reduced total number of adipocytes. Finally, even though Plac8(-/-) mice showed impaired thermogenesis due to brown fat dysfunction, this was not associated with changes in glycemia or plasma free fatty acid and triglyceride levels. Collectively, these data indicate that Plac8 is an upstream regulator of C/EBPβ required for adipogenesis in vitro. However, in vivo, Plac8 is dispensable for the differentiation of white adipocytes with preserved fat storage capacity but is required for normal fat cell number regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After nutrient ingestion there is an increase in energy expenditure that has been referred to as dietary-induced thermogenesis. In the present study we have employed indirect calorimetry to compare the increment in energy expenditure after the ingestion of 75 g of glucose or fructose in 17 healthy volunteers. During the 4 h after glucose ingestion the plasma insulin concentration increased by 33 +/- 4 microU/ml and this was associated with a significant increase in carbohydrate oxidation and decrement in lipid oxidation. Energy expenditure increased by 0.08 +/- 0.01 kcal/min. When fructose was ingested, the plasma insulin concentration increased by only 8 +/- 2 microU/ml vs. glucose. Nonetheless, the increments in carbohydrate oxidation and decrement in lipid oxidation were significantly greater than with glucose. The increment in energy expenditure was also greater with fructose. When the mean increment in plasma insulin concentration after fructose was reproduced using the insulin clamp technique, the increase in carbohydrate oxidation and decrement in lipid oxidation were markedly reduced compared with the fructose-ingestion study; energy expenditure failed to increase above basal levels. To examine the role of the adrenergic nervous system in fructose-induced thermogenesis, fructose ingestion was also performed during beta-adrenergic blockade with propranolol. The increase in energy expenditure during fructose plus propranolol was lower than with fructose ingestion alone. These results indicate that the stimulation of thermogenesis after carbohydrate ingestion is related to an augmentation of cellular metabolism and is not dependent on an increase in the plasma insulin concentration per se.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flowers of Annonaceae are characterized by fleshy petals, many stamens with hard connective shields and numerous carpels with sessile stigmas often covered by sticky secretions. The petals of many representatives during anthesis form a closed pollination chamber. Protogynous dichogamy with strong scent emissions especially during the pistillate stage is a character of nearly all species. Scent emissions can be enhanced by thermogenesis. The prevailing reproductive system in the family seems to be self-compatibility. The basal genus Anaxagorea besides exhibiting several ancestral morphological characters has also many characters which reappear in other genera. Strong fruit-like scents consisting of fruit-esters and alcohols mainly attract small fruit-beetles (genus Colopterus, Nitidulidae) as pollinators, as well as several other beetles (Curculionidae, Chrysomelidae) and fruit-flies (Drosophilidae), which themselves gnaw on the thick petals or their larvae are petal or ovule predators. The flowers and the thick petals are thus a floral brood substrate for the visitors and the thick petals of Anaxagorea have to be interpreted as an antipredator structure. Another function of the closed thick petals is the production of heat by accumulated starch, which enhances scent emission and provides a warm shelter for the attracted beetles. Insight into floral characters and floral ecology of Anaxagorea, the sister group of the rest of the Annonaceae, is particularly important for understanding functional evolution and diversification of the family as a whole. As beetle pollination (cantharophily) is plesiomorphic in Anaxagorea and in Annonaceae, characters associated with beetle pollination appear imprinted in members of the whole family. Pollination by beetles (cantharophily) is the predominant mode of the majority of species worldwide. Examples are given of diurnal representatives (e.g., Guatteria, Duguetia, Annona) which function on the basis of fruit-imitating flowers attracting mainly fruit-inhabiting nitidulid beetles, as well as nocturnal species (e.g., large-flowered Annona and Duguetia species), which additionally to most of the diurnal species exhibit strong flower warming and provide very thick petal tissues for the voracious dynastid scarab beetles (Dynastinae, Scarabaeidae). Further examples will show that a few Annonaceae have adapted in their pollination also to thrips, flies, cockroaches and even bees. Although this non-beetle pollinated species have adapted in flower structure and scent compounds to their respective insects, they still retain some of the specialized cantharophilous characters of their ancestors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that mitochondria are the main site for ATP generation within most tissues. However, mitochondria also participate in a surprising number of alternative activities, including intracellular Ca2+ regulation, thermogenesis and the control of apoptosis. In addition, mitochondria are the main cellular generators of reactive oxygen species, and may trigger necrotic cell death under conditions of oxidative stress. This review concentrates on these alternative mitochondrial functions, and their role in cell physiopathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is a neurotransmitter promoting energy storage by activating Y-receptors and thus affecting food intake, thermogenesis and adipose tissue metabolism. NPY is expressed both in the central and sympathetic nervous system. Hypothalamic NPY is known to stimulate feeding, but the effects of noradrenergic neuron NPY are more ambiguous. Chronic stress stimulates fat accumulation via NPY release from noradrenergic neurons. Furthermore, polymorphism in the human Npy gene has been associated with metabolic disturbances and increased NPY secretion after sympathetic stimulation. The main objective of this study was to clarify the mechanisms of noradrenergic neuron NPY in the development of obesity. The metabolic phenotype of a homozygous mouse overexpressing NPY in the brain noradrenergic neurons and sympathetic nervous system (OE-NPYDβH mouse) was characterized. OE-NPYDβH mice had an increased fat mass and body weight, which caused impairments of glucose metabolism and hyperinsulinaemia with age. There were no differences in energy intake or expenditure, but the sympathetic tone was down-regulated and the endocannabinoid system activated. Furthermore, peripheral Y2-receptors in energy-rich conditions played an important role in mediating the fat-accumulating effect of NPY. These results indicate that noradrenergic neuron NPY promotes obesity via direct effects in the periphery and by modulating the sympatho-adrenal and endocannabinoid systems. Additionally, NPY in the central noradrenergic neurons is believed to possess many important roles. The phenotype of the OE-NPYDβH mouse resembles the situations of chronic stress and Npy gene polymorphism and thus these mice may be exploited in testing novel drug candidates for the treatment of obesity.