958 resultados para THERAPY-INDUCED APOPTOSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-induced apoptosis is important in immunologic cytotoxicity, autoimmunity, sepsis, normal embryonic development, and wound healing. TNF exerts cytotoxicity on many types of tumor cells but not on normal cells. The molecular events leading to cell death triggered by TNF are still poorly understood. We found that enforced expression of an activated H-ras oncogene converted the non-tumorigenic TNF-resistant C3H 10T1/2 fibroblasts into tumorigenic cells (10TEJ) that also became very sensitive to TNF-induced apoptosis. This finding suggested that the oncogenic form of H-Ras, in which the p21 is locked in the GTP-bound form, could play a role in TNF-induced apoptosis of these cells. To investigate whether Ras activation is an obligatory step in TNF-induced apoptosis, we introduced two different molecular antagonists of Ras, namely the Rap1A tumor suppressor gene or the dominant-negative rasN17 gene, into H-ras transformed 10TEJ cells. Expression of either Rap1A or RasN17 in 10TEJ cells resulted in abrogation of TNF-induced apoptosis. Similar results were obtained by expression of either Ras antagonist in L929 cells, a fibroblast cell line that is sensitive to TNF-induced apoptosis but does not have a ras mutation. The effects of Rap-1A and RasN17 appear to be specific to TNF, since cytotoxicity induced by doxorubicin and thapsigargin are unaffected. Additionally, constitutive apoptosis sensitivity in isolated nuclei, as measured by activation of Ca$\sp{2+}$-dependent endogenous endonuclease, is not affected by Rap-1A or RasN17. Moreover, TNF treatment of L929 cells increased Ras-bound GTP, indicating that Ras activation is triggered by TNF. Thus, Ras activation is required for TNF-induced apoptosis in mouse cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to investigate the cellular and molecular mechanisms by which glutathione (GSH) is involved in the process of apoptosis induced by cisplatin [cis-diamminedichloroplatinum(II), cis-DDP] in the HL60 human promyelocytic leukemia cell line. The data show that during the onset or induction of apoptosis, GSH levels in cisplatin-treated cells increased 50% compared to control cells. The increase in intracellular GSH was associated with enhanced expression of γ-glutamylcysteine synthetase (γ-GCS), the enzyme that catalyzes the rate- limiting step in the biosynthesis of glutathione. After depletion of intracellular GSH with D,L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of γ-GCS, biochemical and morphological analysis revealed that the mechanism of cell death had switched from apoptosis to necrosis. In contrast, when intracellular GSH was elevated by exposure of cells to a GSH-ethyl-ester and then treatment with cisplatin, no change in the induction and kinetics of apoptosis were observed. However, when cells were exposed to cisplatin before intracellular GSH levels were increased, apoptosis was observed to occur 6 hours earlier compared to cells without GSH elevation. To further examine the molecular aspects of these effects of GSH on the apoptotic process, changes in the expression of bcl-2 and bax, were investigated in cells with depleted and elevated GSH. Using reverse transcription polymerase chain reaction, no significant change in the expression of bcl-2 gene transcripts was observed in cells in either the GSH depleted or elevated state; however, a 75% reduction in GSH resulted in a 40% decrease in the expression of bax gene transcripts. In contrast, a 6-fold increase in GSH increased the expression of bax by 3-fold relative to controls. Similar results were obtained for bax gene expression and protein synthesis by northern analysis and immunoprecipitation, respectively. These results suggest that GSH serves a dual role in the apoptotic process. The first role which is indirect, involves the protection of the cell from extensive damage following exposure to a specific toxicant so as to prevent death by necrosis, possibly by interacting with the DNA damaging agent and/or its active metabolites. The second role involves a direct involvement of GSH in the apoptotic process that includes upregulation of bax expression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction of cell-autonomous apoptosis following oncogene-induced overproliferation is a major tumor-suppressive mechanism in vertebrates. However, the detailed mechanism mediating this process remains enigmatic. In this study, we demonstrate that dMyc-induced cell-autonomous apoptosis in the fruit fly Drosophila melanogaster relies on an intergenic sequence termed the IRER (irradiation-responsive enhancer region). The IRER mediates the expression of surrounding proapoptotic genes, and we use an in vivo reporter of the IRER chromatin state to gather evidence that epigenetic control of DNA accessibility within the IRER is an important determinant of the strength of this response to excess dMyc. In a previous work, we showed that the IRER also mediates P53-dependent induction of proapoptotic genes following DNA damage, and the chromatin conformation within IRER is regulated by polycomb group-mediated histone modifications. dMyc-induced apoptosis and the P53-mediated DNA damage response thus overlap in a requirement for the IRER. The epigenetic mechanisms controlling IRER accessibility appear to set thresholds for the P53- and dMyc-induced expression of apoptotic genes in vivo and may have a profound impact on cellular sensitivity to oncogene-induced stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer and neuroblastoma in clinical trials. 4HPR induces growth inhibition and apoptosis in various cancer cells including head and neck squamous cell carcinoma (HNSCC) cells. 4HPR induces apoptosis by several mechanisms including increasing reactive oxygen species (ROS), or inducing mitochondrial permeability transition (MPT). 4HPR has also been shown to modulate the level of different proteins by transcriptional activation or posttranslational modification in various cellular contexts. However, the mechanism of its action is not fully elucidated. In this study, we explored the mechanism of 4HPR-induced apoptosis in HNSCC cells. ^ First, we identified proteins modulated by 4HPR by using proteomics approaches including: Powerblot western array and 2-dimensional polyacrylamide gel electrophoresis. We found that 4HPR modulated the levels of several proteins including c-Jun. Further analysis has shown that 4HPR induced activation of Activator Protein 1 (AP-1) components, c-Jun and ATF-2. We also found that 4HPR increased the level of Heat shock protein (Hsp) 70 and phosphorylation of Hsp27. ^ Second, we found that 4HPR induced prolonged activation of JNK, p38/MAPK and extracellular signal-regulated kinase (ERK). We also demonstrated that the activation of these kinases is required for 4HPR-induced apoptosis. JNK inhibitor SP600125 and siRNA against JNK1 and JNK2 suppressed, while overexpression of JNK1 enhanced 4HPR-induced apoptosis. p38/MAPK inhibitor PD169316 and MEK1/2 inhibitor PD98059 also suppressed 4HPR-induced apoptosis. We also demonstrated that activation of JNK, p38/MAPK and ERK is triggered by ROS generation induced by 4HPR. We also found that translation inhibitor, cycloheximide, suppressed 4HPR-induced apoptosis through inhibition of 4HPR-induced events (e.g. ROS generation, cytochrome c release, JNK activation and suppression of Akt). We also demonstrated that MPT is involved in 4HPR-induced apoptosis. ^ Third, we demonstrated the presence of NADPH oxidase in HNSCC 2B cells. We also found that 4HPR increased the level of the p67phox, a subunit of NADPH oxidase which participates in ROS production and apoptosis induced by 4HPR. ^ The novel insight into the mechanism by which 4HPR induces apoptosis can be used to improve design of future clinical studies with this synthetic retinoid in combination with specific MAPK modulators. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tumor suppressor p16 is a negative regulator of the cell cycle, and acts by preventing the phosphorylation of RB, which in turn prevents the progression from G1 to S phase of the cell cycle. In addition to its role in the cell cycle, p16 may also be able to induce apoptosis in some tumors. Ewing's sarcoma, a pediatric cancer of the bone and soft tissue, was used to study the ability of p16 to induce apoptosis due to the fact that p16 is often deleted in Ewing's sarcoma tumors and may play a role in the oncogenesis or progression of this disease. The purpose of these studies was to determine whether introduction of p16 into Ewing's sarcoma cells would induce apoptosis. We infected the Ewing's sarcoma cell line TC71, which does not express p16, with adenovirus- p16 (Ad-p16). Ad-p16 infection led to the production of functional p16 as measured by the induction of G1 arrest. Ad-p16 infection induced as much as a 100% increase in G1 arrest compared to untreated cells. As measured by propidium iodide (PI) and Annexin V staining, Ad-p16 was able to induce apoptosis to levels 20–30 fold higher than controls. Furthermore, Ad-p16 infection led to loss of RB protein before apoptosis could be detected. The loss of RB protein was due to post-translational degradation of RB, which was inhibited by the addition of the proteasome inhibitors PS-341 and NPI-0052. Downregulation of RB with si-RNA sensitized cells to Ad-p16-induced apoptosis, indicating that RB protects from apoptosis in this model. This study shows that p16 leads to the degradation of RB by the ubiquitin/proteasome pathway, and that this degradation may be important for the induction of apoptosis. Given that RB may protect from apoptosis in some tumors, apoptosis-inducing therapies may be enhanced in tumors which have lost RB expression, or in which RB is artificially inactivated. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bladder cancer is the fifth most common cancer with more than 50,000 cases diagnosed each year. Interferon-α (IFNα) is mostly used in combination with BCG for the treatment of transitional cell carcinoma (TCC). To examine the effects of IFNα on bladder cancer cells, I analyzed a panel of 20 bladder cancer cell lines in terms of their sensitivity to IFNα-induced apoptosis and the underlying mechanisms. I identified three categories: cells that die after 48hr, after 72h, and cells resistant even after 72hr of IFNα treatment. Examination of the IFN-signal transduction pathway revealed that the defect was not due to abrogation of IFN signaling. Further analysis demonstrated dependency of IFN-induced apoptosis on caspase-8, implicating the role of death receptors in IFN-induced cell death. Of the six most-IFN-sensitive cell lines, the majority upregulated Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) at the mRNA and protein level and IFN-induced cell death was mediated through TRAIL, while a minority of the most IFN-sensitive cells undergo apoptosis through a TNFα-dependent mechanism. IFNα resistance was due to either absence of TRAIL upregulation at the mRNA or protein level, resistance to exogenous rhTRAIL itself or lack of sensitization to IFN-induced cell death. Downregulation of XIAP, or XIAP inactivation through its regulator NFκB has been reported to sensitize tumor cells to death receptor-induced cell death. Baseline and IFN-inducible XIAP levels were examined in the most and least IFN-sensitive cells, knocking down XIAP and the p65 subunit of NFκB enhanced IFN-induced cell death, implicating XIAP downregulation as a mechanism through which bladder cancer cells are sensitized to IFN-induced apoptosis. To determine whether or not the proteasome inhibitor Bortezomib (BZ) sensitizes bladder cancer cells to IFN-induced cell death, the combined effects of IFN+BZ and the underlying molecular mechanisms were examined both in vitro and in vivo using two bladder xenograft models. In both models, tumor growth inhibition was the result of either increased cell death of tumor cells exerted by the two agents and/or inhibition of angiogenesis. In vitro, MAP downregulation in response to the combined treatment of IFN+BZ accounts for one of the mechanisms mediating IFN+BZ cell death in bladder cancer cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer, and neuroblastoma. 4HPR induces apoptosis in various cancer cells and production of reactive oxygen species (ROS) has been suggested as a possible cause underlying these effects. However, the mechanisms governing these effects by 4HPR are not fully elucidated. In this study, we explored the mechanisms of 4HPR-induced ROS increase and apoptosis in human cancer cells. ^ First, we identified genes modulated by 4HPR using oligonucleotide gene expression arrays and found that they fall into specific functional canonical pathways and gene networks using Ingenuity Pathways Analysis®. Further analysis has shown that 4HPR induced up-regulation of Endoplasmic Reticulum (ER)-related genes such as Heat shock proteins 70 and 90 and the transcriptional factor, GADD153. These findings were validated using quantitative real-time PCR. ^ Second, we found that 4HPR induced extensive ER stress evidenced by dilation of the ER and endoribonuclease-mediated splicing and activation of the transcriptional factor, XBP-1. In addition, 4HPR induced the up-regulation of various ER stress-related genes and their protein products, as well as cleavage and activation of the ER specific Caspase-4. Concomitantly with XBP-1 splicing, all of these effects were dependent on ROS generation by 4HPR. Furthermore, chemical inhibition and RNA interference studies revealed a novel pro-apoptotic role for HSP70/A1A in 4HPR-mediated apoptosis. ^ Third, we observed rapid activation of the small GTPase Rac by 4HPR which was upstream of ROS generation. Inhibition of Rac activity or silencing of its expression by RNA interference inhibited ROS generation and apoptosis induction by 4HPR. siRNA targeting PAK1 and expression of a dominant negative Rac, decreased 4HPR-mediated ROS generation, while expression of a constitutive active Rac increased basal and 4HPR-induced ROS generation and PARP cleavage. Furthermore, metastatic cancer cells exhibited higher Rac activation, ROS generation, and cell growth inhibition due to 4HPR exposure compared to their primary cancer cell counterparts. ^ These findings provide novel insights into 4HPR-mediated ROS generation and apoptosis induction and support the use of ROS inducing agents such as 4HPR against metastatic cancer cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms involved in the development of pulmonary silicosis have not been well defined, however most current evidence implicates a central role for alveolar macrophages in this process. We propose that the fibrotic potential of a particulate depends upon its ability to cause apoptosis in alveolar macrophage (AM). The overall goal of this study was to determine the mechanism of silica-induced apoptosis of AM. Human AM were treated with fibrogenic, poorly fibrogenic and nonfibrogenic model particulates, such as, silica, amorphous silica and titanium dioxide, respectively (equal surface area). Treatment with silica resulted in apoptosis in human AM as observed by morphology, DNA fragmentation and Cell Death ELISA assays. In contrast, amorphous silica and titanium dioxide demonstrated no significant apoptotic potential. To elucidate the possible mechanism by which silica causes apoptosis, we investigated the role of the scavenger receptor (SR) in silica-induced apoptosis. Cells were pretreated with and without SR ligand binding inhibitors, polyinosinic acid (Poly I), fucoidan and high density lipoprotein (HDL), prior to silica treatment. Pretreatment with Poly I and fucoidan resulted in significant inhibition of silica-induced apoptosis suggesting that silica-induced AM apoptosis is mediated via the SR. Further, we examined the involvement of interleukin converting enzyme (ICE) family of proteases in silica-mediated apoptosis. Silica activated ICE, Ich-1L, cpp32 beta and cleavage of PARP. Taken together, these results suggested that (1) fibrogenic particulates, such as, silica caused apoptosis of alveolar macrophages, (2) this apoptotic potential of fibrogenic particulates may be a critical factor in initiating an inflammatory response resulting in fibrosis, (3) silica-induced apoptosis of alveolar macrophages may be due to the interaction of silica particulates with the SR, and (4) silica-induced apoptosis involves the activation of the ICE family of proteases. An understanding of the molecular events involved in fibrogenic particulate-induced apoptosis may provide a useful insight into the mechanism involved in particulate-induced fibrosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fine balance between proliferation and apoptosis plays a primary role in carcinogenesis. Proto-oncogenes that induce both proliferation and apoptosis provide a powerful inbuilt system to inhibit clonal expansion of cells with high proliferation rates. This provides a restraint to the development of neoplasms. C-myc expressing cells undergo apoptosis in low serum by an unknown mechanism. Several lines of evidence suggested that c-myc induces apoptosis by a transcriptional mechanism. However, the target genes of this program have not been fully defined. Protein synthesis inhibitors induce apoptosis in c-myc over-expressing cells at high serum levels suggesting that inhibition of synthesis of a survival factor may induce apoptosis. We show that the expression of c-myc directly correlates with an increase in the level of a survival protein, bcl-$\rm x\sb{L},$ and a decrease in the pro-apoptotic protein, bax, at both the protein and mRNA level. Furthermore, a significant decrease of the bcl-$\rm x\sb{L}$ protein levels is observed under low serum conditions. In order to investigate the mechanism of regulation of bcl-$\rm x\sb{L}$ and bax by c-myc, the bcl-x and bax promoters were cloned, sequenced and shown to contain c-myc binding sites. The chloramephenicol acetyl transferase (CAT) reporter assay was used to demonstrate activation of the bcl-x promoter by increasing levels of c-myc when co-transfected in COS cells. The bax promoter was also shown to be transrepressed in c-myc expressing cells. The role of bcl-$\rm x\sb{L}$ in apoptosis regulation in c-myc cell lines in normal and low serum was then investigated. Cells lines expressing c-myc and bcl-$\rm x\sb{L}$ were generated and were shown to be resistant to apoptosis induction in low serum. Furthermore, cell lines expressing c-myc, anti-sense bcl-$\rm x\sb{L}$ and $\beta$-galactosidase demonstrated significantly enhanced rates of apoptosis in high serum compared to c-myc Rat 1a cells. These findings suggest that c-myc activates a survival program involving bcl-$\rm x\sb{L}$ upregulation and bax downregulation. However, this survival signal is reduced under low serum conditions by the relative downregulation of bcl-$\rm x\sb{L}$ allowing for apoptosis to proceed. These data also directly demonstrates that downregulation in the level of bcl-$\rm x\sb{L}$ associated with low serum conditions is a critical determinant of c-myc induced apoptosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorylation is thought to be an essential first step in the prompt deactivation of photoexcited rhodopsin. In vitro, the phosphorylation can be catalyzed either by rhodopsin kinase (RK) or by protein kinase C (PKC). To investigate the specific role of RK, we inactivated both alleles of the RK gene in mice. This eliminated the light-dependent phosphorylation of rhodopsin and caused the single-photon response to become larger and longer lasting than normal. These results demonstrate that RK is required for normal rhodopsin deactivation. When the photon responses of RK−/− rods did finally turn off, they did so abruptly and stochastically, revealing a first-order backup mechanism for rhodopsin deactivation. The rod outer segments of RK−/− mice raised in 12-hr cyclic illumination were 50% shorter than those of normal (RK+/+) rods or rods from RK−/− mice raised in constant darkness. One day of constant light caused the rods in the RK−/− mouse retina to undergo apoptotic degeneration. Mice lacking RK provide a valuable model for the study of Oguchi disease, a human RK deficiency that causes congenital stationary night blindness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At high concentrations, the tubule poison paclitaxel is able to kill cancer cells that express Bcl-2; it inhibits the antiapoptotic activity of Bcl-2 by inducing its phosphorylation. To localize the site on Bcl-2 regulated by phosphorylation, mutant forms of Bcl-2 were constructed. Mutant forms of Bcl-2 with an alteration in serine at amino acid 70 (S70A) or with deletion of a 60-aa loop region between the α1 and α2 helices (Δloop Bcl-2, which also deletes amino acid 70) were unable to be phosphorylated by paclitaxel treatment of MDA-MB-231 cells into which the genes for the mutant proteins were transfected. The Δloop mutant completely inhibited paclitaxel-induced apoptosis. In cells expressing the S70A mutant, paclitaxel induced about one-third the level of apoptosis seen with wild-type Bcl-2. To evaluate the role of mitogen-activated protein kinases (MAPKs) in Bcl-2 phosphorylation, the activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 was examined. Paclitaxel-induced apoptosis was associated with phosphorylation of Bcl-2 and activation of ERK and JNK MAPKs. If JNK activation was blocked by transfections with either a stress-activated protein kinase kinase dominant-negative (K→R) gene (which prevents the activation of a kinase upstream of JNK) or MAPK phosphatase-1 gene (which dephosphorylates and inactivates JNK), Bcl-2 phosphorylation did not occur, and the cells were not killed by paclitaxel. By contrast, neither an ERK inhibitor (PD098059) nor p38 inhibitors (SB203580 and SB202190) had an effect on Bcl-2 phosphorylation. Thus, our data show that the antiapoptotic effects of Bcl-2 can be overcome by phosphorylation of Ser-70; forms of Bcl-2 lacking the loop region are much more effective at preventing apoptosis than wild-type Bcl-2 because they cannot be phosphorylated. JNK, but not ERK or p38 MAPK, appear to be involved in the phosphorylation of Bcl-2 induced by paclitaxel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ETS1 is a cellular homologue of the product of the viral ets oncogene of the E26 virus, and it functions as a tissue-specific transcription factor. It plays an important role in cell proliferation, differentiation, lymphoid cell development, transformation, angiogenesis, and apoptosis. ETS1 controls the expression of critical genes involved in these processes by binding to ets binding sites present in the transcriptional regulatory regions. The ETS1 gene generates two proteins, p51 and a spliced variant, p42, lacking exon VII. In this paper we show that p42-ETS1 expression bypasses the damaged Fas-induced apoptotic pathway in DLD1 colon carcinoma cells by up-regulating interleukin 1β-converting enzyme (ICE)/caspase-1 and causes these cancer cells to become susceptible to the effects of the normal apoptosis activation system. ICE/caspase-1 is a redundant system in many cells and tissues, and here we demonstrate that it is important in activating apoptosis in cells where the normal apoptosis pathway is blocked. Blocking ICE/caspase-1 activity by using specific inhibitors of this protease prevents the p42-ETS1-induced apoptosis from occurring, indicating that the induced ICE/caspase-1 enzyme is responsible for killing the cancer cells. p42-ETS1 activates a critical alternative apoptosis pathway in cancer cells that are resistant to normal immune attack, and thus it may be useful as an anticancer therapeutic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of cyclin-dependent kinases (cdks) has been implicated in apoptosis induced by various stimuli. We find that the Fas-induced activation of cdc2 and cdk2 in Jurkat cells is not dependent on protein synthesis, which is shut down very early during apoptosis before caspase-3 activation. Instead, activation of these kinases seems to result from both a rapid cleavage of Wee1 (an inhibitory kinase of cdc2 and cdk2) and inactivation of anaphase-promoting complex (the specific system for cyclin degradation), in which CDC27 homolog is cleaved during apoptosis. Both Wee1 and CDC27 are shown to be substrates of the caspase-3-like protease. Although cdk activities are elevated during Fas-induced apoptosis in Jurkat cells, general activation of the mitotic processes does not occur. Our results do not support the idea that apoptosis is simply an aberrant mitosis but, instead, suggest that a subset of mitotic mechanisms plays an important role in apoptosis through elevated cdk activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IAPs comprise a family of inhibitors of apoptosis found in viruses and animals. In vivo binding studies demonstrated that both baculovirus and Drosophila IAPs physically interact with an apoptosis-inducing protein of Drosophila, Reaper (RPR), through their baculovirus IAP repeat (BIR) region. Expression of IAPs blocked RPR-induced apoptosis and resulted in the accumulation of RPR in punctate perinuclear locations which coincided with IAP localization. When expressed alone, RPR rapidly disappeared from the cells undergoing RPR-induced apoptosis. Expression of P35, a caspase inhibitor, also blocked RPR-induced apoptosis and delayed RPR decline, but RPR remained cytoplasmic in its location. Mutational analysis of RPR demonstrated that caspases were not directly responsible for RPR disappearance. The physical interaction of IAPs with RPR provides a molecular mechanism for IAP inhibition of RPR’s apoptotic activity.