999 resultados para TERNARY TERBIUM COMPLEXES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decreased activity of the guanine nucleotide regulatory protein (N) of the adenylate cyclase system is present in cell membranes of some patients with pseudohypoparathyrodism (PHP-Ia) whereas others have normal activity of N (PHP-Ib). Low N activity in PHP-Ia results in a decrease in hormone (H)-stimulatable adenylate cyclase in various tissues, which might be due to decreased ability to form an agonist-specific high affinity complex composed of H, receptor (R), and N. To test this hypothesis, we compared beta-adrenergic agonist-specific binding properties in erythrocyte membranes from five patients with PHP-Ia (N = 45% of control), five patients with PHP-Ib (N = 97%), and five control subjects. Competition curves that were generated by increasing concentrations of the beta-agonist isoproterenol competing with [125I]pindolol were shallow (slope factors less than 1) and were computer fit to a two-state model with corresponding high and low affinity for the agonist. The agonist competition curves from the PHP-Ia patients were shifted significantly (P less than 0.02) to the right as a result of a significant (P less than 0.01) decrease in the percent of beta-adrenergic receptors in the high affinity state from 64 +/- 22% in PHP-Ib and 56 +/- 5% in controls to 10 +/- 8% in PHP-Ia. The agonist competition curves were computer fit to a "ternary complex" model for the two-step reaction: H + R + N in equilibrium HR + N in equilibrium HRN. The modeling was consistent with a 60% decrease in the functional concentration of N, and was in good agreement with the biochemically determined decrease in erythrocyte N protein activity. These in vitro findings in erythrocytes taken together with the recent observations that in vivo isoproterenol-stimulated adenylate cyclase activity is decreased in patients with PHP (Carlson, H. E., and A. S. Brickman, 1983, J. Clin. Endocrinol. Metab. 56:1323-1326) are consistent with the notion that N is a bifunctional protein interacting with both R and the adenylate cyclase. It may be that in patients with PHP-Ia a single molecular and genetic defect accounts for both decreased HRN formation and decreased adenylate cyclase activity, whereas in PHP-Ib the biochemical lesion(s) appear not to affect HRN complex formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photophysical properties of lanthanide complexes have been studied extensively; however, fundamental parameters such as the intrinsic quantum yield as well as radiative and nonradiative decay rates are difficult or even impossible to measure experimentally. Herein, a photoacoustic (PA) method is proposed to determine the intrinsic quantum yield of lanthanide complexes with lifetimes in the order of milliseconds. This method is used to determine the intrinsic quantum yields for europium (III)-containing metallomesogens as well as terbium(III) complexes. The results show that the PA signal is sensitive to both the lifetime and the ratio of the fast-to-slow heat component of the samples. It is found that there is an efficient ligand sensitization and a moderate intrinsic quantum yield for the complexes. The intrinsic quantum yield of Eu3+ in the metallomesogens exhibits an obvious increase upon the isotropic liquid to smectic A transition. The proposed PA method is quite simple, and con contribute to a clearer understanding of the photophysical processes in luminescent lanthanide complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear magnetic resonance spectroscopy has been used to study donor-acceptor complexes of boron trifluoride with several ureas, tetramethylthiourea, tetramethylselenourea, and tetramethylquanidine as well as adducts of tetramethyl- -urea with BF2Cl, BFC1 2 , and BC1 3 - A large number of mixed tetrahaloborate ions, including some of the ternary ones such as BF2CIBr-,have been obtained by ligand exchange reactions and studied by NMR techniques. The bonding in these ions is of the same inherent interest as the bonding in the isoelectronic tetrahalomethanes which have been the subject of many detailed studies and have been involved in a controversy concerning the existence of and the nature of "fluorine hyperconjugation" or C-F P1T- Pn bonding_ Ligand exchange reactions also gave rise to the difluoroboron cation, (TMU)20BF2+o The difluoroboron cation has been observed in solutions of TMU-BF3 , and has been proposed as a possible intermediate for fluorine exchange reactions in BF3 adducts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of nonelectrolytic lanthanide(III) complexes, [ ML 2 Cl 3 ] · 2 H 2 O, where M is lanthanum(III), praseodymium(III), neodymium(III), samarium(III), gadolinium(III), terbium(III), dysprosium(III), and yttrium(III), containing sulfamethoxazole ligand (L) are prepared. The structure and bonding of the ligand are studied by elemental analysis, magnetic susceptibility measurements, IR, 1 H NMR, TG / DTA , X-ray diffraction studies, and electronic spectra of the complexes. The stereochemistry around the metal ions is a monocapped trigonal prism in which four of the coordination sites are occupied by two each from two chelating ligands, sulfonyl oxygen, and nitrogen of the amide group and the remaining three positions are occupied by three chlorines. The ligand and the new complexes were tested in vitro to evaluate their activity against the bacteria Escherichia coli and Staphylococcus aureus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[VIVO(acac)(2)] reacts with an equimolar amount of benzoyl hydrazone of 2-hydroxyacetophenone (H2L1) or 5-chloro-2-hydroxyacetophenone (H2L2) in the presence of excess pyridine (py) in methanol to produce the quaternary [(VO)-O-V(L-1)(OCH3)(py)] (1) and [(VO)-O-V(L-2)(OCH3)(py)] (2) complexes, respectively, while under similar condition, the benzoyl hydrazones of 2-hydroxy-5-methylacetophenone (H2L3) and 2-hydroxy-5-methoxyacetophenone (H2L4) afforded only the methoxy bridged dimeric [(VO)-O-V(L-3/L-4)(OCH3)](2) complexes. The X-ray structural analysis of 1 and 2 indicates that the geometry around the metal is distorted octahedral where the three equatorial positions are occupied by the phenolate-O, enolate-O and the imine-N of the fully deprotonated hydrazone ligand in its enolic form and the fourth one by a methoxide-O atom. An oxo-O and a pyridine-N atom occupy two axial positions. Quaternary complexes exhibit one quasi-reversible one-electron reduction peak near 0.25 V versus SCE in CH2Cl2 and they decompose appreciably to the corresponding methoxy bridged dimeric complex in CDCl3 solution as indicated by their H-1 NMR spectra. These quaternary VO3+ complexes are converted to the corresponding V2O34+-complexes simply on refluxing them in acetone and to the VO2+-complexes on reaction with KOH in methanol. An equimolar amount of 8-hydroxyquinoline (Hhq) converts these quaternary complexes to the ternary [(VO)-O-V(L)(hq)] complexes in CHCl3. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]center dot 2H(2)O (1) of mono-condensed tridentate Schiff base ligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the Nil, as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)(2)center dot 4H(2)O furnishing the complex [NiL(NCS)] (2) and with CuCl2 center dot 2H(2)O in the presence of NaN3 or NH4SCN producing [CuL(N-3)](2) (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)(2)center dot 6H(2)O and Cu(NO3)(2)center dot 3H(2)O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)(2)center dot 6H(2)O or Ni(NO3)(2)center dot 6H(2)O to yield [Ni(hap)(2)] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, Ni-II possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around Cu-II in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around Cu-II is square pyramidal. In both 5 and 6, the Cu-II atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)(2)center dot 6H(2)O in methanol produced a trinuclear Cu-II complex, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O center dot 0.5CH(2)Cl(2) (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary Cu-II complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central mu(3)-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal Cu-II coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = -15.4(2) cm(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]·2H2O (1) of mono-condensed tridentate Schiff baseligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the NiII as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)2·4H2O furnishing the complex [NiL(NCS)] (2) and with CuCl2·2H2O in the presence of NaN3 or NH4SCN producing [CuL(N3)]2 (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)2·6H2O and Cu(NO3)2·3H2O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)2·6H2O or Ni(NO3)2·6H2O to yield [Ni(hap)2] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, NiII possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around CuII in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around CuII is square pyramidal. In both 5 and 6, the CuII atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the synthesis and thermal decomposition of complexes of general formula: Ln(beta-dik)(3)L (where Ln=Tb(+3), beta-dik=4,4,4-trifluoro-1-phenyl-1,3butanedione(btfa) and L=1,10-fenantroline(phen) or 2,2-bipiridine(bipy). The powders were characterized by melting point, FTIR spectroscopy, LTV-visible, elemental analysis, scanning differential calorimeter(DSC) and thermogravimetry(TG). The TG/DSC curves were obtained simultaneously in a system DSC-TGA, under nitrogen atmosphere. The experimental conditions were: 0.83 ml.s(-1) carrier gas flow, 2.0 +/- 0.5 mg samples and 10 degrees C.min(-1) heating rate. The CHN elemental analysis of the Tb(btfa)(3)bipy and Tb(btfa)(3)phen complexes, are in good agreement with the expected values. The IR spectra evinced that the metal ion is coordinated to the ligands via C=O and C-N groups. The TG/DTG/DSC curves of the complexes show that they decompose before melting. The profiles of the thermal decomposition of the Tb(btfa)3phen and Tb(btfa)3bipy showed six and five decomposition stages, respectively. Our data suggests that the thermal stability of the complexes under investigation followed the order: Tb(btfa)(3)phen < Tb(btfa)(3)bipy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protonation of 4-dimethylaminobenzylidenepyruvate (DMBP) and 2-chloro-4-dimethylaminobenzylidenepyruvate (2-CI-DMBP) and their complex formation with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II) and Al(III) have been studied by potentiometric and spectrophotometric methods at 25 °C and ionic strength 0.500 M, held with sodium perchlorate. The stability order found for 1 :1 complexes of both ligands is Al(III) > Cu(II) > Pb(II) > Ni(II) > Zn(II) > Co(II) > Cd(II) > Mn(II). The stability changes move in the same direction as the pKa of the ligands. The results are compared with literature values reported for metal ion pyruvate systems. Thermodynamic stabilities of ternary complexes formed in Cu(II)-B-L- systems, where B = 2,2′-bipyridyl (bipy), ethylenediamine or glycinate and L = DMBP or 2-CI-DMBP, were also determined. The Cu(bipy)L+ species are more stable than would be expected on purely statistical grounds. The importance of the :t system associated with bipy on the enhanced stability of its mixed ligand complexes is stressed. Analytical applications of the investigated ligands are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two novel coordination polymers with the formula {[Ln(2)(2,5-tdc)(3)(dmso)(2)].H2O}(n) (Ln = Tb(III) for (1) and Dy(III) for (2)), (2,5-tdc(2-) = 2,5-thiophenedicarboxylate and dmso = dimethylsulfoxide) have been synthesized by the diffusion method and characterized by thermal analysis, vibrational spectroscopy and single crystal X-ray diffraction analysis. Structure analysis reveals that 2,5-tdc(2-) play a versatile role toward different lanthanide ions to form three-dimensional metal-organic frameworks (MOFs) in which the lanthanides ions are heptacoordinated. Photophysical properties were studied using excitation and emission spectra, where the photoluminescence data show the high emission intensity of the characteristic transitions D-5(4 ->) F-7(J) (J= 6, 5, 4 and 3) for (1) and (F9/2 -> HJ)-F-4-H-6 (J = 15/2, 13/2 and 11/2) for (2), indicating that 2,5-tdc(2-) is a good sensitizer. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription factors control eukaryotic polymerase II function by influencing the recruitment of multiprotein complexes to promoters and their subsequent integrated function. The complexity of the functional ‘transcriptosome’ has necessitated biochemical fractionation and subsequent protein sequencing on a grand scale to identify individual components. As a consequence, much is now known of the basal transcription complex. In contrast, less is known about the complexes formed at distal promoter elements. The c-fos SRE, for example, is known to bind Serum Response Factor (SRF) and ternary complex factors such as Elk-1. Their interaction with other factors at the SRE is implied but, to date, none have been identified. Here we describe the use of mass-spectrometric sequencing to identify six proteins, SRF, Elk-1 and four novel proteins, captured on SRE duplexes linked to magnetic beads. This approach is generally applicable to the characterisation of nucleic acid-bound protein complexes and the post-translational modification of their components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some topoisomerase inhibitors trap covalent topoisomerase–DNA complexes as topoisomerase–drug–DNA ternary complexes. Ternary complex formation results in inhibition of DNA replication and generation of permanent double-strand breaks. Recent demonstrations of the stimulation of covalent topoisomerase–DNA complex formation by DNA lesions suggest that DNA damage may act as an endogenous topoisomerase poison. We have investigated the effects of abasic (AP) sites on topoisomerase IV (Topo IV). AP sites can stimulate the formation of covalent Topo IV–DNA complexes when they are located either within the 4 base overhang generated by DNA scission or immediately 5′ to the point of scission (the –1 position). Thus, the AP site acts as a position-specific, endogenous topoisomerase poison. Both EDTA and salt can reverse covalent Topo IV–DNA complexes induced by AP sites located within the 4 base overhang. Interestingly, an AP site at the –1 position inhibits EDTA-mediated reversal of formation of the covalent Topo IV–DNA complex. Furthermore, we find that, unlike quinolone-induced covalent Topo IV–DNA complexes, AP site-induced covalent Topo IV–DNA complexes do not inhibit the helicase activities of the DnaB and T7 Gene 4 proteins. These results suggest that the AP site-induced poisoning of Topo IV does not arrest replication fork progression.