932 resultados para TEETH AND DENTAL APPLICATIONS
Resumo:
Glioblastoma multiforme is the most common and most malignant primary brain tumour with a dismal prognosis. The advent of new chemotherapies with alkylating agents crossing the blood-brain barrier, like temozolomide, have permitted to notably ameliorate the survival of a subgroup of patients. Improved outcome was associated with epigenetic silencing of the MGMT (O6-methylguanin methyltransferase) gene by promotor methylation, thereby blocking its repair capability, thus rendering the alkylating agents more effective. This particularity can be tested by methylation specific PCR on resected tumour tissue, best on fresh frozen biopsies, and allows identification of patients more susceptible to respond favourably to the treatment.
Resumo:
The proposal to work on this final project came after several discussions held with Dr. Elzbieta Malinowski Gadja, who in 2008 published the book entitled Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications (Data-Centric Systems and Applications). The project was carried out under the technical supervision of Dr. Malinowski and the direct beneficiary was the University of Costa Rica (UCR) where Dr. Malinowski is a professor at the Department of Computer Science and Informatics. The purpose of this project was twofold: First, to translate chapter III of said book with the intention of generating educational material for the use of the UCR and, second, to venture in the field of technical translation related to data warehouse. For the first component, the goal was to generate a final product that would eventually serve as an educational tool for the post-graduate courses of the UCR. For the second component, this project allowed me to acquire new skills and put into practice techniques that have helped me not only to perfom better in my current job as an Assistant Translator of the Inter-American BAnk (IDB), but also to use them in similar projects. The process was lenggthy and required torough research and constant communication with the author. The investigation focused on the search of terms and definitions to prepare the glossary, which was the basis to start the translation project. The translation process itself was carried out by phases, so that comments and corrections by the author could be taken into account in subsequent stages. Later, based on the glossary and the translated text, illustrations had been created in the Visio software were translated. In addition to the technical revision by the author, professor Carme Mangiron was in charge of revising the non-technical text. The result was a high-quality document that is currently used as reference and study material by the Department of Computer Science and Informatics of Costa Rica.
Resumo:
Based on the assumption that silicate application can raise soil P availability for crops, the aim of this research was to compare the effect of silicate application on soil P desorption with that of liming, in evaluations based on two extractors and plant growth. The experiment was carried out in randomized blocks with four replications, in a 3 × 3 × 5 factorial design, in which three soil types, three P rates, and four soil acidity correctives were evaluated in 180 experimental plots. Trials were performed in a greenhouse using corn plants in 20-dm³ pots. Three P rates (0, 50 and 150 mg dm-3) were applied in the form of powder triple superphosphate and the soil was incubated for 90 days. After this period, soil samples were collected for routine chemical analysis and P content determination by the extraction methods resin, Mehlich-1 and remaining P. Based on the results, acidity correctives were applied at rates calculated for base saturation increased to 70 %, with subsequent incubation for 60 more days, when P content was determined again. The acidity correctives consisted of: dolomitic lime, steelmaking slag, ladle furnace slag, and wollastonite. Therefore, our results showed that slags raised the soil P content more than lime, suggesting a positive correlation between P and Si in soil. Silicon did not affect the extractor choice since both Mehlich-1 and resin had the same behavior regarding extracted P when silicon was applied to the soil. For all evaluated plant parameters, there was significant interaction between P rates and correctives; highest values were obtained with silicate.
Resumo:
Self-measurement of blood pressure (SMBP) is increasingly used to assess blood pressure outside the medical setting. A prerequisite for the wide use of SMBP is the availability of validated devices providing reliable readings when they are handled by patients. This is the case today with a number of fully automated oscillometric apparatuses. A major advantage of SMBP is the great number of readings, which is linked with high reproducibility. Given these advantages, one of the major indications for SMBP is the need for evaluation of antihypertensive treatment, either for individual patients in everyday practice or in clinical trials intended to characterize the effects of blood-pressure-lowering medications. In fact, SMBP is particularly helpful for evaluating resistant hypertension and detecting white-coat effect in patients exhibiting high office blood pressure under antihypertensive therapy. SMBP might also motivate the patient and improve his or her adherence to long-term treatment. Moreover, SMBP can be used as a sensitive technique for evaluating the effect of antihypertensive drugs in clinical trials; it increases the power of comparative trials, allowing one to study fewer patients or to detect smaller differences in blood pressure than would be possible with the office measurement. Therefore, SMBP can be regarded as a valuable technique for the follow-up of treated patients as well as for the assessment of antihypertensive drugs in clinical trials.
Resumo:
This article summarizes the basic principles of scanning electron microscopy and the capabilities of the technique with different examples ofapplications in biomedical and biological research.
Resumo:
The development of new drug delivery systems to target the anterior segment of the eye may offer many advantages: to increase the biodisponibility of the drug, to allow the penetration of drug that cannot be formulated as solutions, to obtain constant and sustained drug release, to achieve higher local concentrations without systemic effects, to target more specifically one tissue or cell type, to reduce the frequency of instillation and therefore increase the observance and comfort of the patient while reducing side effects of frequent instillation. Several approaches are developed, aiming to increase the corneal contact time by modified formulation or reservoir systems, or by increasing the tissue permeability using iontophoresis. To date, no ocular drug delivery system is ideal for all purposes. To maximize treatment efficacy, careful evaluation of the specific pathological condition, the targeted Intraocular tissue and the location of the most severe pathology must be made before selecting the method of delivery most suitable for each individual patient.
Resumo:
Résumé -Caractéristiques architecturales des génomes bactériens et leurs applications Les bactéries possèdent généralement un seul chromosome circulaire. A chaque génération, ce chromosome est répliqué bidirectionnellement, par deux complexes enzymatiques de réplication se déplaçant en sens opposé depuis l'origine de réplication jusqu'au terminus, situé à l'opposé. Ce mode de réplication régit l'architecture du chromosome -l'orientation des gènes par rapport à la réplication, notamment - et est en grande partie à l'origine des pressions qui provoquent la variation de la composition en nucléotides du génome, hors des contraintes liées à la structure et à la fonction des protéines codées sur le chromosome. Le but de cette thèse est de contribuer à quantifier les effets de la réplication sur l'architecture chromosomique, en s'intéressant notamment aux gènes des ARN ribosomiques, cruciaux pour la bactérie. D'un autre côté, cette architecture est spécifique à l'espèce et donne ainsi une «identité génomique » aux gènes. Il est démontré ici qu'il est possible d'utiliser des marqueurs «naïfs » de cette identité pour détecter, notamment dans le génome du staphylocoque doré, des îlots de pathogénicité, qui concentrent un grand nombre de facteurs de virulence de la bactérie. Ces îlots de pathogénicité sont mobiles, et peuvent passer d'une bactérie à une autre, mais conservent durant un certain temps l'identité génomique de leur hôte précédent, ce qui permet de les reconnaître dans leur nouvel hôte. Ces méthodes simples, rapides et fiables seront de la plus haute importance lorsque le séquençage des génomes entiers sera rapide et disponible à très faible coût. Il sera alors possible d'analyser instantanément les déterminants pathogéniques et de résistance aux antibiotiques des agents pathogènes. Summary The bacterial genome is a highly organized structure, which may be referred to as the genome architecture, and is mainly directed by DNA replication. This thesis provides significant insights in the comprehension of the forces that shape bacterial chromosomes, different in each genome and contributing to confer them an identity. First, it shows the importance of the replication in directing the orientation of prokaryotic ribosomal RNAs, and how it shapes their nucleotide composition in a tax on-specific manner. Second, it highlights the pressure acting on the orientation of the genes in general, a majority of which are transcribed in the same direction as replication. Consequently, apparent infra-arm genome rearrangements, involving an exchange of the leading/lagging strands and shown to reduce growth rate, are very likely artifacts due to an incorrect contig assembly. Third, it shows that this genomic identity can be used to detect foreign parts in genomes, by establishing this identity for a given host and identifying the regions that deviate from it. This property is notably illustrated with Staphylococcus aureus: known pathogenicity islands and phages, and putative ancient pathogenicity islands concentrating many known pathogenicity-related genes are highlighted; the analysis also detects, incidentally, proteins responsible for the adhesion of S. aureus to the hosts' cells. In conclusion, the study of nucleotide composition of bacterial genomes provides the opportunity to better understand the genome-level pressures that shape DNA sequences, and to identify genes and regions potentially related to pathogenicity with fast, simple and reliable methods. This will be of crucial importance when whole-genome sequencing will be a rapid, inexpensive and routine tool.
Resumo:
Visualization is a relatively recent tool available to engineers for enhancing transportation project design through improved communication, decision making, and stakeholder feedback. Current visualization techniques include image composites, video composites, 2D drawings, drive-through or fly-through animations, 3D rendering models, virtual reality, and 4D CAD. These methods are used mainly to communicate within the design and construction team and between the team and external stakeholders. Use of visualization improves understanding of design intent and project concepts and facilitates effective decision making. However, visualization tools are typically used for presentation only in large-scale urban projects. Visualization is not widely accepted due to a lack of demonstrated engineering benefits for typical agency projects, such as small- and medium-sized projects, rural projects, and projects where external stakeholder communication is not a major issue. Furthermore, there is a perceived high cost of investment of both financial and human capital in adopting visualization tools. The most advanced visualization technique of virtual reality has only been used in academic research settings, and 4D CAD has been used on a very limited basis for highly complicated specialty projects. However, there are a number of less intensive visualization methods available which may provide some benefit to many agency projects. In this paper, we present the results of a feasibility study examining the use of visualization and simulation applications for improving highway planning, design, construction, and safety and mobility.
Resumo:
Visualization is a relatively recent tool available to engineers for enhancing transportation project design through improved communication, decision making, and stakeholder feedback. Current visualization techniques include image composites, video composites, 2D drawings, drive-through or fly-through animations, 3D rendering models, virtual reality, and 4D CAD. These methods are used mainly to communicate within the design and construction team and between the team and external stakeholders. Use of visualization improves understanding of design intent and project concepts and facilitates effective decision making. However, visualization tools are typically used for presentation only in large-scale urban projects. Visualization is not widely accepted due to a lack of demonstrated engineering benefits for typical agency projects, such as small- and medium-sized projects, rural projects, and projects where external stakeholder communication is not a major issue. Furthermore, there is a perceived high cost of investment of both financial and human capital in adopting visualization tools. The most advanced visualization technique of virtual reality has only been used in academic research settings, and 4D CAD has been used on a very limited basis for highly complicated specialty projects. However, there are a number of less intensive visualization methods available which may provide some benefit to many agency projects. In this paper, we present the results of a feasibility study examining the use of visualization and simulation applications for improving highway planning, design, construction, and safety and mobility.
Resumo:
IMPORTANCE OF THE FIELD: Promising immunotherapeutic agents targeting co-stimulatory pathways are currently being tested in clinical trials. One player in this array of regulatory pathways is the LAG-3/MHC class II axis. The lymphocyte activation gene-3 (LAG-3) is a negative co-stimulatory receptor that modulates T cell homeostasis, proliferation and activation. A recombinant soluble dimeric form of LAG-3 (sLAG-3-Ig, IMP321) shows adjuvant properties and enhances immunogenicity of tumor vaccines. Recent clinical trials produced encouraging results, especially when the human dimeric soluble form of LAG-3 (hLAG-3-Ig) was used in combination with chemotherapy. AREAS COVERED IN THIS REVIEW: The biological relevance of LAG-3 in vivo. Pre-clinical data demonstrating adjuvant properties, as well as the improvement of tumor immunity by sLAG-3-Ig. Recent advances in the clinical development of the therapeutic reagent IMP321, hLAG-3-Ig, for cancer treatment. WHAT THE READER WILL GAIN: This review summarizes preclinical and clinical data on the biological functions of LAG-3. TAKE HOME MESSAGE: The LAG-3 inhibitory pathway is attracting attention, in the light of recent studies demonstrating its role in T cell unresponsiveness, and Treg function after chronic antigen stimulation. As a soluble recombinant dimer, the sLAG-3-Ig protein acts as an adjuvant for therapeutic induction of T cell responses, and may be beneficial to cancer patients when used in combination therapies.
Resumo:
The implementation of new techniques of imaging in the daily practice of the radiation oncologist is a major advance in these last 10 years. This allows optimizing the therapeutic intervals and locoregional control of the disease while limiting side effects. Among them, positron emission tomography (PET) offers an opportunity to the clinician to obtain data relative to the tumoral biological mechanisms, while benefiting from the morphological images of the computed tomography (CT) scan. Recently hybrid PET/CT has been developed and numerous studies aimed at optimizing its use in the planning, the evaluation of the treatment response and the prognostic value. The choice of the radiotracer (according to the type of cancer and to the studied biological mechanism) and the various methods of tumoral delineation, require a regular update to optimize the practices. We propose throughout this article, an exhaustive review of the published researches (and in process of publication) until December 2011, as user guide of PET/CT in all the aspects of the modern radiotherapy (from the diagnosis to the follow-up): biopsy guiding, optimization of treatment planning and dosimetry, evaluation of tumor response and prognostic value, follow-up and early detection of recurrence versus tumoral necrosis. In a didactic purpose, each of these aspects is approached by primary tumoral location, and illustrated with representative iconographic examples. The current contribution of PET/CT and its perspectives of development are described to offer to the radiation oncologist a clear and up to date reading in this expanding domain.
Resumo:
We study discrete-time models in which death benefits can depend on a stock price index, the logarithm of which is modeled as a random walk. Examples of such benefit payments include put and call options, barrier options, and lookback options. Because the distribution of the curtate-future-lifetime can be approximated by a linear combination of geometric distributions, it suffices to consider curtate-future-lifetimes with a geometric distribution. In binomial and trinomial tree models, closed-form expressions for the expectations of the discounted benefit payment are obtained for a series of options. They are based on results concerning geometric stopping of a random walk, in particular also on a version of the Wiener-Hopf factorization.