967 resultados para Swine slurry
Resumo:
La thérapie cellulaire est une avenue pleine de promesses pour la régénération myocardique, par le remplacement du tissu nécrosé, ou en prévenant l'apoptose du myocarde survivant, ou encore par l'amélioration de la néovascularisation. Les cellules souches de la moelle osseuse (CSMO) expriment des marqueurs cardiaques in vitro quand elles sont exposées à des inducteurs. Pour cette raison, elles ont été utilisées dans la thérapie cellulaire de l'infarctus au myocarde dans des études pre-cliniques et cliniques. Récemment, il a été soulevé de possibles effets bénéfiques de l'ocytocine (OT) lors d’infarctus. Ainsi, l’OT est un inducteur de différenciation cardiaque des cellules souches embryonnaires, et cette différenciation est véhiculée par la voie de signalisation du monoxyde d’azote (NO)-guanylyl cyclase soluble. Toutefois, des données pharmacocinétiques de l’OT lui attribue un profil non linéaire et celui-ci pourrait expliquer les effets pharmacodynamiques controversés, rapportés dans la lttérature. Les objectifs de ce programme doctoral étaient les suivants : 1) Caractériser le profil pharmacocinétique de différents schémas posologiques d'OT chez le porc, en développant une modélisation pharmacocinétique / pharmacodynamique plus adaptée à intégrer les effets biologiques (rénaux, cardiovasculaires) observés. 2) Isoler, différencier et trouver le temps optimal d’induction de la différenciation pour les CSMO porcines (CSMOp), sur la base de l'expression des facteurs de transcription et des protéines structurales cardiaques retrouvées aux différents passages. 3) Induire et quantifier la différenciation cardiaque par l’OT sur les CSMOp. 4) Vérifier le rôle du NO dans cette différenciation cardiaque sur les CSMOp. Nous avons constaté que le profil pharmacocinétique de l’OT est mieux expliqué par le modèle connu comme target-mediated drug disposition (TMDD), parce que la durée du séjour de l’OT dans l’organisme dépend de sa capacité de liaison à son récepteur, ainsi que de son élimination (métabolisme). D'ailleurs, nous avons constaté que la différenciation cardiomyogénique des CSMOp médiée par l’OT devrait être induite pendant les premiers passages, parce que le nombre de passages modifie le profile phénotypique des CSMOp, ainsi que leur potentiel de différenciation. Nous avons observé que l’OT est un inducteur de la différenciation cardiomyogénique des CSMOp, parce que les cellules induites par l’OT expriment des marqueurs cardiaques, et l'expression de protéines cardiaques spécifiques a été plus abondante dans les cellules traitées à l’OT en comparaison aux cellules traitées avec la 5-azacytidine, qui a été largement utilisée comme inducteur de différenciation cardiaque des cellules souches adultes. Aussi, l’OT a causé la prolifération des CMSOp. Finalement, nous avons observé que l'inhibition de la voie de signalisation du NO affecte de manière significative l'expression des protéines cardiaques spécifiques. En conclusion, ces études précisent un potentiel certain de l’OT dans le cadre de la thérapie cellulaire cardiomyogénique à base de cellules souches adultes, mais soulignent que son utilisation requerra de la prudence et un approfondissement des connaissances.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Background: Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex. Outbreaks of swine influenza virus with a significant level of co-infections due to S. suis have lately been reported. In order to analyze, for the first time, the transcriptional host response of swine tracheal epithelial (NPTr) cells to H1N1 swine influenza virus (swH1N1) infection, S. suis serotype 2 infection and a dual infection, we carried out a comprehensive gene expression profiling using a microarray approach. Results: Gene clustering showed that the swH1N1 and swH1N1/S. suis infections modified the expression of genes in a similar manner. Additionally, infection of NPTr cells by S. suis alone resulted in fewer differentially expressed genes compared to mock-infected cells. However, some important genes coding for inflammatory mediators such as chemokines, interleukins, cell adhesion molecules, and eicosanoids were significantly upregulated in the presence of both pathogens compared to infection with each pathogen individually. This synergy may be the consequence, at least in part, of an increased bacterial adhesion/invasion of epithelial cells previously infected by swH1N1, as recently reported. Conclusion: Influenza virus would replicate in the respiratory epithelium and induce an inflammatory infiltrate comprised of mononuclear cells and neutrophils. In a co-infection situation, although these cells would be unable to phagocyte and kill S. suis, they are highly activated by this pathogen. S. suis is not considered a primary pulmonary pathogen, but an exacerbated production of proinflammatory mediators during a co-infection with influenza virus may be important in the pathogenesis and clinical outcome of S. suis-induced respiratory diseases.
Resumo:
Since late 2004, the swine industry in the province of Quebec has experienced a significant increase in death rate related to postweaning multisystemic wasting syndrome (PMWS). To explain this phenomenon, 2 hypotheses were formulated: 1) the presence of a 2nd pathogen could be exacerbating the porcine circovirus 2 (PCV-2) infection, or 2) a new and more virulent PCV-2 strain could be infecting swine. In 2005, 13 PMWS cases were submitted to the Quebec provincial diagnostic laboratory and PCV-2 was the only virus that could be found consistently by PCR in all 13 samples. The PCR detection results obtained for other viruses revealed the following: 61.5% were positive for porcine reproductive and respiratory syndrome virus, 30.8% for swine influenza virus, 15.4% for porcine parvovirus, 69.2% for swine torque teno virus (swTTV), 38.5% for swine hepatitis E virus (swHEV) and 84.6% for Mycoplasma hyorhinis; transmissible gastroenteritis virus and porcine respiratory coronavirus (TGEV/PRCV) was not detected. Sequences of the entire genome revealed that these PCV-2 strains belonged to a genotype (named PCV-2b) that has never been reported in Canada. Further sequence analyses on 83 other Canadian PCV-2 positive cases submitted to the provincial diagnostic laboratory during years 2005 and 2006 showed that 79.5% of the viral sequences obtained clustered in the PCV-2b genotype. The appearance of the PCV-2b genotype in Canada may explain the death rate increase related to PMWS, but this relationship has to be confirmed.
Resumo:
A swine H3N2 (swH3N2) and pandemic (H1N1) 2009 (pH1N1) influenza A virus reassortant (swH3N2/ pH1N1) was detected in Canadian swine at the end of 2010. Simultaneously, a similar virus was also detected in Canadian mink based on partial viral genome sequencing. The origin of the new swH3N2/pH1N1 viral genes was related to the North American swH3N2 triple-reassortant cluster IV (for hemagglutinin [HA] and neuraminidase [NA] genes) and to pH1N1 for all the other genes (M, NP, NS, PB1, PB2, and PA). Data indicate that the swH3N2/pH1N1 virus can be found in several pigs that are housed at different locations.
Resumo:
In late September 2008, tissue samples from piglets experiencing an acute outbreak of porcine reproductive and respiratory syndrome (PRRS) were submitted to the Veterinary diagnostic service of the University of Montreal. Several diagnostic assays were performed including a multiplex real-time quantitative PCR assay (mrtqPCR) for the detection and differentiation of porcine circovirus (PCV) type 2a and 2b genotypes in the lung and lymph nodes. The pig samples were found to be positive for PCV2a using the mrtqPCR but odd results were obtained. The Ct values obtained with mrtqPCR probes targeting the ORF1 and ORF2 of PCV2 were not as expected which suggested the presence of genomic variations in the PCV2 viral genome. Ultimately, a total of three diagnostic cases with mrtqPCR unusual results were investigated. After virus isolation and sequence analyses, a new type of PCV was identified in those three cases. Based on sequence analyses, this new PCV genome contains the ORF1 of PCV1 and the ORF2 of PCV2a and its entire viral genome nucleotide identity compared to PCV1, PCV2a and 2b are 86.4%, 88.7% and 86.5%, respectively. It is proposed to name this new PCV by taking into account the nomenclature of Segales et al. (2008) and by indicating the origin of the ORF1 at first and the origin of the ORF2 in second. Consequently, the name proposed for this new PCV is PCV1/2a. The prevalence of PCV1/2a seems to be very low in Quebec, Canada (2.5% of PCV positive cases), and its origin is now in debate.
Resumo:
In 2007, an H3N2 influenza A virus was isolated from Canadian mink. This virus was found to be phylogenetically related to a triple reassortant influenza virus which emerged in Canadian swine in 2005, but it is antigenically distinct. The transmission of the virus from swine to mink seems to have occurred following the feeding of animals with a ration composed of uncooked meat by-products of swine obtained from slaughterhouse facilities. Serological analyses suggest that the mink influenza virus does not circulate in the swine population. Presently, the prevalence of influenza virus in Canadian farmed and wild mink populations is unknown. The natural occurrence of influenza virus infection in mink with the presence of clinical signs is a rare event that deserves to be reported.
Resumo:
Mycoplasma hyopneumoniae causes severe economic losses to the swine industry worldwide and the prevention of its related disease, enzootic porcine pneumonia, remains a challenge. The P97 adhesin protein of M. hyopneumoniae should be a good candidate for the development of a subunit vaccine because antibodies produced against P97 could prevent the adhesion of the pathogen to the respiratory epithelial cells in vitro. In the present study, a P97 recombinant replication-defective adenovirus (rAdP97c) subunit vaccine efficiency was evaluated in pigs. The rAdP97c vaccine was found to induce both strong P97 specific humoral and cellular immune responses. The rAdP97c vaccinated pigs developed a lower amount of macroscopic lung lesions (18.5 ± 9.6%) compared to the unvaccinated and challenged animals (45.8 ± 11.5%). rAdP97c vaccine reduced significantly the severity of inflammatory response and the amount of M. hyopneumoniae in the respiratory tract. Furthermore, the average daily weight gain was slightly improved in the rAdP97c vaccinated pigs (0.672 ± 0.068 kg/day) compared to the unvaccinated and challenged animals (0.568 ± 0.104 kg/day). A bacterin-based commercial vaccine (Suvaxyn® MH-one) was more efficient to induce a protective immune response than rAdP97c even if it did not evoke a P97 specific immune response. These results suggest that immunodominant antigens other than P97 adhesin are also important in the induction of a protective immune response and should be taken into account in the future development of M. hyopneumoniae subunit vaccines.
Resumo:
Streptococcus suis serotype 2 is an important swine bacterial pathogen, and it is also an emerging zoonotic agent. It is unknown how S. suis virulent strains, which are usually found in low quantities in pig tonsils, manage to cross the first host defense lines to initiate systemic disease. Influenza virus produces a contagious infection in pigs which is frequently complicated by bacterial coinfections, leading to significant economic impacts. In this study, the effect of a preceding swine influenza H1N1 virus (swH1N1) infection of swine tracheal epithelial cells (NTPr) on the ability of S. suis serotype 2 to adhere to, invade, and activate these cells was evaluated. Cells preinfected with swH1N1 showed bacterial adhesion and invasion levels that were increased more than 100-fold compared to those of normal cells. Inhibition studies confirmed that the capsular sialic acid moiety is responsible for the binding to virus-infected cell surfaces. Also, preincubation of S. suis with swH1N1 significantly increased bacterial adhesion to/invasion of epithelial cells, suggesting that S. suis also uses swH1N1 as a vehicle to invade epithelial cells when the two infections occur simultaneously. Influenza virus infection may facilitate the transient passage of S. suis at the respiratory tract to reach the bloodstream and cause bacteremia and septicemia. S. suis may also increase the local inflammation at the respiratory tract during influenza infection, as suggested by an exacerbated expression of proinflammatory mediators in coinfected cells. These results give new insight into the complex interactions between influenza virus and S. suis in a coinfection model.
Resumo:
Four Gram-positive-staining, strictly anaerobic, non-spore-forming, rod-shaped organisms were isolated from a pig manure storage pit. Comparative 16S rRNA gene sequence analysis revealed that the isolates belonged to two related but distinct groups. Sequence analysis showed that the two groups of isolates were highly related to each other (approx. 97% 16S rRNA gene sequence similarity), forming a distinct cluster within the Clostridium coccoides suprageneric rDNA grouping. Biochemical and physiological studies confirmed the division of the isolates into two related, albeit distinct, groups. Based on both phenotypic and phylogenetic evidence, it is proposed that the unidentified rod-shaped isolates from pig manure should be classified in a novel genus, Hespellia gen. nov., as Hespellia stercorisuis sp. nov. and Hespellia porcina sp. nov. The type species of the novel genus is H. stercorisuis (type strain, PC18(T) = NRRL B-23456(T) = CCUG 46279(T) = ATCC BAA-677(T)) and the type strain of H. porcina is PC80(T) (= NRRL B-23458(T) = ATCC BAA-674(T)).
Resumo:
Two Gram-negative, anaerobic, non-spore-forming, rod-shaped organisms were isolated from a swine-manure storage pit. Based on morphological and biochemical criteria, the strains were tentatively identified as belonging to the genus Bacteroides but they did not appear to correspond to any recognized species of the genus. Comparative 16S rRNA gene sequencing studies showed that the strains were related closely to each other and confirmed their placement in the genus Bacteroides, but sequence divergence values of > 10% from reference Bacteroides species demonstrated that the organisms from manure represent a novel species. Based on biochemical criteria and molecular genetic evidence, it is proposed that the unknown isolates from manure be assigned to a novel species of the genus Bacteroides, as Bacteroides coprosuis sp. nov. The type strain is PC139(T) (=CCUG 50528(T)=NRRL B-41113(T)).
Resumo:
Phenotypic and molecular genetic studies were performed on an unknown facultative anaerobic, catalase-negative, non-spore-forming, rod-shaped bacterium isolated from a pig manure storage pit. The unknown bacterium was nutritionally fastidious with growth enhanced by the addition of rumen fluid and was phenotypically initially identified as an Eubacterium species. Comparative 16S rRNA gene sequencing studies, however, revealed that the unknown bacterium was phylogenetically distant from Eubacterium limosum (the type species of the genus Eubacterium) and related organisms. Phylogenetically, the unknown species displayed a close association with an uncultured organism from human subgingival plaque and formed an unknown sub-line within a cluster of organisms which includes Alloioccoccus otitis, Alkalibacterium olivoapovliticus, Allofustis seminis, Dolosigranulum pigrum, and related organisms, within the low mol% G + C Gram-positive bacteria. Sequence divergence values of > 8% with all known taxonomically recognised taxa, however, clearly indicates the novel bacterium represents a hitherto unknown genus. Based on both phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium from pig manure be classified in a new genus and species, as Atopostipes suicloacale gen. nov., sp. nov. The type strain of Atopostipes suicloacale is PPC79(T) = NRRL 23919(T) = DSM 15692(T). Crown Copyright (C) 2004 Published by Elsevier Ltd. All rights reserved.
Resumo:
Probiotics have enjoyed a surge of popularity in recent years, with many novel applications being proposed. One of the foremost for the agricultural industry is their potential for livestock growth promotion, a subject of special interest since the 2006 EU-wide ban on sub therapeutic levels of in-feed antibiotic growth enhancers. Probiotics work through a number of differing mechanisms, most of which are not, as yet, fully understood. The probiotics interact with the host’s natural gut flora in a complex and varying array of mechanisms, but ultimately work to improve nutrient digestibility and gut health and to suppress the actions of pathogenic bacteria. In conclusion, probiotics can be a useful replacement for in-feed antibiotic growth enhancers. However, care should be taken due to the variability of the size of the effect and the inconsistency of the results in the published literature.
Resumo:
This paper reports a method for the direct and simultaneous determination of Cr and Mn in alumina by slurry sampling graphite furnace atomic absorption spectrometry (SiS-SIMAAS) using niobium carbide (NbC) as a graphite platform modifier and sodium fluoride (NaF) as a matrix modifier. 350 mu g of Nb were thermally deposited on the platform surface allowing the formation of NbC (mp 3500 degrees C) to minimize the reaction between aluminium and carbon of the pyrolytic platform, improving the graphite tube lifetime up to 150 heating cycles. A solution of 0.2 mol L(-1) NaF was used as matrix modifier for alumina dissolution as cryolite-based melt, allowing volatilization during pyrolysis step. Masses (c.a. 50 mg) of sample were suspended in 30 ml of 2.0% (v/v) of HNO(3). Slurry was manually homogenized before sampling. Aliquots of 20 mu l of analytical solutions and slurry samples were co-injected into the graphite tube with 20 mu l of the matrix modifier. In the best conditions of the heating program, pyrolysis and atomization temperatures were 1300 degrees C and 2400 degrees C, respectively. A step of 1000 degrees C was optimized allowing the alumina dissolution to form cryolite. The accuracy of the proposed method has been evaluated by the analysis of standard reference materials. The found concentrations presented no statistical differences compared to the certified values at 95% of the confidence level. Limits of detection were 66 ng g(-1) for Cr and 102 ng g(-1) for Mn and the characteristic masses were 10 and 13 pg for Cr and Mn, respectively.