968 resultados para Swimming crabs
Resumo:
The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.
Resumo:
The aim of the present study was to assess the effects of endurance training on leptin levels and adipose tissue gene expression and their association with insulin, body composition and energy intake. Male Wistar rats were randomly divided into two groups: trained (N = 18) and sedentary controls (N = 20). The trained group underwent swimming training for 9 weeks. Leptin and insulin levels, adiposity and leptin gene expression in epididymal and inguinal adipose tissue were determined after training. There were no differences in energy intake between groups. Trained rats had a decreased final body weight (-10%), relative and total body fat (-36 and -55%, respectively) and insulin levels (-55%) compared with controls (P < 0.05). Although trained animals showed 56% lower leptin levels (2.58 ± 1.05 vs 5.89 ± 2.89 ng/mL in control; P < 0.05), no difference in leptin gene expression in either fat depot was demonstrable between groups. Stepwise multiple regression analysis showed that lower leptin levels in trained rats were due primarily to their lower body fat mass. After adjustment for total body fat, leptin levels were still 20% (P < 0.05) lower in exercised rats. In conclusion, nine weeks of swimming training did not affect leptin gene expression, but did lead to a decrease in leptin levels that was independent of changes in body fat.
Resumo:
We determined the effect of long-term aerobic swimming training regimens of different intensities on colonic carcinogenesis in rats. Male Wistar rats (11 weeks old) were given 4 subcutaneous injections (40 mg/kg body weight each) of 1,2-dimethyl-hydrazine (DMH, dissolved in 0.9% NaCl containing 1.5% EDTA, pH 6.5), at 3-day intervals and divided into three exercise groups that swam with 0% body weight (EG1, N = 11), 2% body weight (EG2, N = 11), and 4% body weight of load (EG3, N = 10), 20 min/day, 5 days/week for 35 weeks, and one sedentary control group (CG, N = 10). At sacrifice, the colon was removed and counted for tumors and aberrant crypt foci. Tumor size was measured and intra-abdominal fat was weighed. The mean number of aberrant crypt foci was reduced only for EG2 compared to CG (26.21 ± 2.99 vs 36.40 ± 1.53 crypts; P < 0.05). Tumor incidence was not significantly different among groups (CG: 90%; EG1: 72.7%; EG2: 90%; EG3: 80%). Swimming training did not affect either tumor multiplicity (CG: 2.30 ± 0.58; EG1: 2.09 ± 0.44; EG2: 1.27 ± 0.19; EG3: 1.50 ± 0.48 tumors) or size (CG: 1.78 ± 0.24; EG1: 1.81 ± 0.14; EG2: 1.55 ± 0.21; EG3: 2.17 ± 0.22 cm³). Intra-abdominal fat was not significantly different among groups (CG: 10.54 ± 2.73; EG1: 6.12 ± 1.15; EG2: 7.85 ± 1.24; EG3: 5.11 ± 0.74 g). Aerobic swimming training with 2% body weight of load protected against the DMH-induced preneoplastic colon lesions, but not against tumor development in the rat.
Resumo:
Our objective was to determine lipid peroxidation and nuclear factor-κB (NF-κB) activation in skeletal muscle and the plasma cytokine profile following maximum progressive swimming. Adult male Swiss mice (N = 15) adapted to the aquatic environment were randomly divided into three groups: immediately after exercise (EX1), 3 h after exercise (EX2) and control. Animals from the exercising groups swam until exhaustion, with an initial workload of 2% of body mass attached to the tail. Control mice did not perform any exercise but were kept immersed in water for 20 min. Maximum swimming led to reactive oxygen species (ROS) generation in skeletal muscle, as indicated by increased thiobarbituric acid reactive species (TBARS) levels (4062.67 ±1487.10 vs 19,072.48 ± 8738.16 nmol malondialdehyde (MDA)/mg protein, control vs EX1). Exercise also promoted NF-κB activation in soleus muscle. Cytokine secretion following exercise was marked by increased plasma interleukin-6 (IL-6) levels 3 h post-exercise (P < 0.05). Interleukin-10 (IL-10) levels were reduced following exercise and remained reduced 3 h post-exercise (P < 0.05). Plasma levels of other cytokines investigated, monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and interleukin-12 (IL-12), were not altered by exercise. The present findings showed that maximum swimming, as well as other exercise models, led to lipid peroxidation and NF-κB activation in skeletal muscle and increased plasma IL-6 levels. The plasma cytokine response was also marked by reduced IL-10 levels. These results were attributed to exercise type and intensity.
Resumo:
Hoodia gordonii is a plant species used traditionally in southern Africa to suppress appetite. Recently, it has been associated with a significant increase in blood pressure and pulse rate in women, suggesting sympathomimetic activity. The present study investigated the possible antidepressant-like effects of acute and repeated (15 days) administration of H. gordonii extract (25 and 50 mg/kg, po) to mice exposed to a forced swimming test (FST). Neurochemical analysis of brain monoamines was also carried out to determine the involvement of the monoaminergic system on these effects. Acute administration of H. gordonii decreased the immobility of mice in the FST without accompanying changes in general activity in the open-field test during acute treatment, suggesting an antidepressant-like effect. The anti-immobility effect of H. gordonii was prevented by pretreatment of mice with PCPA [an inhibitor of serotonin (5-HT) synthesis], NAN-190 (a 5-HT1A antagonist), ritanserin (a 5-HT2A/2C antagonist), ondansetron (a 5-HT3A antagonist), prazosin (an α1-adrenoceptor antagonist), SCH23390 (a D1 receptor antagonist), yohimbine (an α2-adrenoceptor antagonist), and sulpiride (a D2 receptor antagonist). A significant increase in 5-HT levels in the striatum was detected after acute administration, while 5-HT, norepinephrine and dopamine were significantly elevated after chronic treatment. Results indicated that H. gordonii possesses antidepressant-like activity in the FST by altering the dopaminergic, serotonergic, and noradrenergic systems.
Resumo:
Exercise is known to cause a vasodilatory response; however, the correlation between the vasorelaxant response and different training intensities has not been investigated. Therefore, this study evaluated the vascular reactivity and lipid peroxidation after different intensities of swimming exercise in rats. Male Wistar rats (aged 8 weeks; 250-300 g) underwent forced swimming for 1 h whilst tied to loads of 3, 4, 5, 6, and 8% of their body weight, respectively (groups G3, G4, G5, G6 and G8, respectively; n=5 each). Immediately after the test, the aorta was removed and suspended in an organ bath. Cumulative relaxation in response to acetylcholine (10−12-10−4 M) and contraction in response to phenylephrine (10−12-10−5 M) were measured. Oxidative stress was estimated by determining malondialdehyde concentration. The percentages of aorta relaxation were significantly higher in G3 (7.9±0.20), G4 (7.8±0.29), and G5 (7.9±0.21), compared to the control group (7.2±0.04), while relaxation in the G6 (7.4±0.25) and G8 (7.0±0.06) groups was similar to the control group. In contrast, the percentage of contraction was significantly higher in G6 (8.8 ±0.1) and G8 (9.7±0.29) compared to the control (7.1±0.1), G3 (7.3±0.2), G4 (7.2±0.1) and G5 (7.2±0.2%) groups. Lipid peroxidation levels in the aorta were similar to control levels in G3, G4 and G5, but higher in G6 and G8, and significantly higher in G8 (one-way ANOVA). These results indicate a reduction in vasorelaxing activity and an increase in contractile activity in rat aortas after high-intensity exercise, followed by an increase in lipid peroxidation.
Resumo:
Swimming pool area for Cheverton Residence Hall [originally East Hall], Chapman College, Orange, California, ca. 1978.
Resumo:
Swimming pool for Cheverton Residence Hall [originally East Hall], Chapman College, Orange, California, ca. 1978. The dormitory was dedicated in 1959 as housing for women and torn down in 2002.
Resumo:
A double-blinded, placebo controlled, cross-over design was used to investigate sodium citrate dihydrate (Na-CIT) supplementation improve 200m swimming performance. Ten well-trained, male swimmers (14.9 ± 0.4y; 63.5 ± 4kg) performed four 200m time trials: acute (ACU) supplementation (0.5g/kg), acute placebo (PLC-A), chronic (CHR) (0.1g/kg for 3 days and 0.3g/kg on the 4th day pre-trial), and chronic placebo (PLC-C). Na-CIT was administered 120min pre-trial in solution with 500mL of flavored water; placebo was flavored water. Blood lactate, base excess (BE), bicarbonate, pH, and PCO2 were analyzed at basal, 100min post-ingestion, and 3min post-trial via finger prick. Time, lactate, and rate of perceived exertion were not different between trials. BE and bicarbonate were significantly higher for the ACU and CHR trials compared to placebo. “Responders” improved by 1.03% (P=0.043) and attained significantly higher post-trial lactate concentrations in the ACU versus PLC-A trials and compared to non-responders in the ACU and CHR trials.
Resumo:
A woman in swimming attire sitting on sand with her arm around a dog. The dog is also wearing a hat.
Resumo:
A photograph of an individual swimming in a lake.
Resumo:
A photograph of a man and child swimming together in a lake.
Resumo:
Despite the growing popularity of participatory video as a tool for facilitating youth empowerment, the methodology and impacts of the practice are extremely understudied. This paper describes a study design created to examine youth media methodology and the ethical dilemmas that arose in its attempted implementation. Specifically, elements that added “rigor” to the study (i.e., randomization, pre- and post-measures, and an intensive interview) conflicted with the fundamental tenets of youth participation. The paper concludes with suggestions for studying participatory media methodologies that are more in line with an ethics of participation.
Resumo:
Le but du présent travail est d’apporter la preuve paléontologique mettant en évidence que le clade Raninoida était bien établi dans le Néotropique durant la période Crétacée, où il était représenté par les plus anciennes familles ou par quelques–uns des plus anciens membres des plus anciennes familles. Je décris des taxa raninoïdiens ou similaires, incluant Archaeochimaeridae n. fam. et Archaeochimaera macrophthalma n. gen. n. sp., du Cénomanien supérieur (~95 Ma.) de Colombie (Chapitre 3), Planocarcinus n. gen., Planocarcinus olssoni (Rathbun, 1937) n. comb. et Notopocorystes kerri n. sp., de l’Aptien supérieur (~115 Ma.) de Colombie (Luque et al., accepté) (Chapitre 2). Ces taxa nouveaux, plus la présence de Cenomanocarcinus vanstraeleni Stenzel, 1945, dans l’Albien supérieur de Colombie (Vega et al., 2010), et d’Araripecarcinus ferreirai Martins–Neto, 1987, dans l’Albien du Brésil (Luque et al., en cours) (Chapitre 4), représentent certains des plus anciens signalements de quatre des sept familles raninoïdiennes, au moins, connues à ce jour. La nouvelle famile Archaeochimaeridae se présente comme le groupe frère du clade Raninidae + clade Symethidae. Cependant, la combinaison unique de caractères primitifs, dérivés et homoplasiques est inégalable chez les Raninoida, et, en fait, chez les autres sections de crabes podotrèmes. Alors que les taxa raninoïdiens du Crétacé sont bien connus aux latitudes élevées, les signalements en Amérique du Sud tropicale sont rares et épars, avec pour résultat de considérables distorsions pour traiter des importantes questions biogéographiques et phylogénétiques. Sur la base de données taxonomiques, paléobiogéographiques et cladistiques, une ré–appréciation des toute premières distributions spatio–temporelle des “crabes grenouilles” est proposée, avec pour objet de contribuer à une plus large compréhension de la diversité, phylogénie et évolution des premiers brachyoures au cours des âges.