969 resultados para Surface relief gratings
Resumo:
Surface roughness is an important geomorphological variable which has been used in the Earth and planetary sciences to infer material properties, current/past processes, and the time elapsed since formation. No single definition exists; however, within the context of geomorphometry, we use surface roughness as an expression of the variability of a topographic surface at a given scale, where the scale of analysis is determined by the size of the landforms or geomorphic features of interest. Six techniques for the calculation of surface roughness were selected for an assessment of the parameter`s behavior at different spatial scales and data-set resolutions. Area ratio operated independently of scale, providing consistent results across spatial resolutions. Vector dispersion produced results with increasing roughness and homogenization of terrain at coarser resolutions and larger window sizes. Standard deviation of residual topography highlighted local features and did not detect regional relief. Standard deviation of elevation correctly identified breaks of slope and was good at detecting regional relief. Standard deviation of slope (SD(slope)) also correctly identified smooth sloping areas and breaks of slope, providing the best results for geomorphological analysis. Standard deviation of profile curvature identified the breaks of slope, although not as strongly as SD(slope), and it is sensitive to noise and spurious data. In general, SD(slope) offered good performance at a variety of scales, while the simplicity of calculation is perhaps its single greatest benefit.
Resumo:
This study investigated the influence of bioactive materials on the dentin surface whitened. MATERIAL AND METHODS: Three bovine teeth were shaped into three dentin wafers. Each wafer was then sectioned, into six dentin slices. One slice from each tooth was distributed into one of 6 groups: 1.CG = control group (distilled water); 2.WT = whitening treatment; 3.WT + MI Paste Plus, applied once a day; 4.WT + Relief ACP30, applied once a day for 30 mintes; 5.WT + Relief ACP60, applied once a day for 60 minutes; 6.WT + Biosilicate®, applied once a week. All groups were treated over 14 days. RESULTS: CG presented all dentinal tubules occluded by smear layer; WT group was observed all dentinal tubules opened. In the groups 3, 4 and 6, tubules were occluded. Group 5, dentinal tubules were completely occluded by mineral deposits. CONCLUSION: The use of bioactive materials immediately after whitening treatment can reduce or even avoid the demineralization effect of whitening and avoid exposing dentinal tubules.
Resumo:
In this work is presented a new method for sensor deployment on 3D surfaces. The method was structured on different steps. The first one aimed discretizes the relief of interest with Delaunay algorithm. The tetrahedra and relative values (spatial coordinates of each vertex and faces) were input to construction of 3D Voronoi diagram. Each circumcenter was calculated as a candidate position for a sensor node: the corresponding circular coverage area was calculated based on a radius r. The r value can be adjusted to simulate different kinds of sensors. The Dijkstra algorithm and a selection method were applied to eliminate candidate positions with overlapped coverage areas or beyond of surface of interest. Performance evaluations measures were defined using coverage area and communication as criteria. The results were relevant, once the mean coverage rate achieved on three different surfaces were among 91% and 100%.
Resumo:
This study was undertaken in a 1566 ha drainage basin situated in an area with cuesta relief in the state of São Paulo, Brazil. The objectives were: 1) to map the maximum potential soil water retention capacity, and 2) to simulate the depth of surface runoff in each geographical position of the area based on a typical rainfall event. The database required for the development of this research was generated in the environment of the geographical information system ArcInfo v.10.1. Undeformed soil samples were collected at 69 points. The ordinary kriging method was used in the interpolation of the values of soil density and maximum potential soil water retention capacity. The spherical model allowed for better adjustment of the semivariograms corresponding to the two soil attributes for the depth of 0 to 20 cm, while the Gaussian model enabled a better fit of the spatial behavior of the two variables for the depth of 20 to 40 cm. The simulation of the spatial distribution revealed a gradual increase in the depth of surface runoff for the rainfall event taken as example (25 mm) from the reverse to the peripheral depression of the cuesta (from west to east). There is a positive aspect observed in the gradient, since the sites of highest declivity, especially those at the front of the cuesta, are closer to the western boundary of the watershed where the lowest depths of runoff occur. This behavior, in conjunction with certain values of erodibility and depending on the land use and cover, can help mitigate the soil erosion processes in these areas.
Resumo:
The effects of cryogenic and stress relief treatments on temper carbide precipitation in the cold work tool steel AISI D2 were studied. For the cryogenic treatment the temperature was −196°C and the holding time was 2, 24 or 30 h. The stress relief heat treatment was carried at 130°C/90 min, when applied. All specimens were compared to a standard thermal cycle. Specimens were studied using metallographic characterisation, X-ray diffraction and thermoelectric power measurements. The metallographic characterisation used SEM (scanning electron microscopy) and SEM-FEG (SEM with field emission gun), besides OM (optical microscopy). No variation in the secondary carbides (micrometre sized) precipitation was found. The temper secondary carbides (nanosized) were found to be more finely dispersed in the matrix of the specimens with cryogenic treatment and without stress relief. The refinement of the temper secondary carbides was attributed to a possible in situ carbide precipitation during tempering.
Resumo:
During the last few years, several methods have been proposed in order to study and to evaluate characteristic properties of the human skin by using non-invasive approaches. Mostly, these methods cover aspects related to either dermatology, to analyze skin physiology and to evaluate the effectiveness of medical treatments in skin diseases, or dermocosmetics and cosmetic science to evaluate, for example, the effectiveness of anti-aging treatments. To these purposes a routine approach must be followed. Although very accurate and high resolution measurements can be achieved by using conventional methods, such as optical or mechanical profilometry for example, their use is quite limited primarily to the high cost of the instrumentation required, which in turn is usually cumbersome, highlighting some of the limitations for a routine based analysis. This thesis aims to investigate the feasibility of a noninvasive skin characterization system based on the analysis of capacitive images of the skin surface. The system relies on a CMOS portable capacitive device which gives 50 micron/pixel resolution capacitance map of the skin micro-relief. In order to extract characteristic features of the skin topography, image analysis techniques, such as watershed segmentation and wavelet analysis, have been used to detect the main structures of interest: wrinkles and plateau of the typical micro-relief pattern. In order to validate the method, the features extracted from a dataset of skin capacitive images acquired during dermatological examinations of a healthy group of volunteers have been compared with the age of the subjects involved, showing good correlation with the skin ageing effect. Detailed analysis of the output of the capacitive sensor compared with optical profilometry of silicone replica of the same skin area has revealed potentiality and some limitations of this technology. Also, applications to follow-up studies, as needed to objectively evaluate the effectiveness of treatments in a routine manner, are discussed.
Resumo:
Die Anregung und Emission von Fluorophoren nahe planaren Metalloberflächen und schiefen Gittern wurde mittels Oberflächenplasmonen Fluoreszenz Spektroskopie (SPFS) untersucht. Die Fluorophore konnten durch das evaneszente Plasmonenfeld angeregt und die einzelnen Abregungskanäle identifiziert werden.Die Sensorarchitektur für den Nachweis der Hybridisierung bestand aus auf einer Streptavidin-Matrix immobilisierten unmarkierten Sondensträngen. Cy5 markierte Zielsequenzen wurden aus der Lösung hybridisiert und die Adsorptionskinetiken konnten oberflächensensitiv detektiert werden.Ein neues Detektionsschema für unmarkierte Zielstränge wurde mittels fluoreszenzmarkirten Sondensträngen realisiert. Die Hybridisierung führte zu der Bildung von steifen helikalen Bereichen in der Probe und separierte den Farbstoff von der Metalloberfläche. Reduzierte Fluorezenzlöschung zeigte daher das Hybridisierungsereignis an.Die Verwendung eines potentiellen Förster-Paares zur Detektion von DNA Hybridisierung wurde untersucht. Donor und Akzeptor wurden an Ziel- und Sondenstrang immobilisiert und das Hybridisierungsereignis konnte anhand der Auslöschung der Donor-Fluorezenz nachgewiesen werden.Schließlich wurde der Einsatz von einzelstrangbindenden Proteinen (SSB) zur Steigerung der Sensitivität bezüglich Basenfehlpaarungen betrachtet. Verdrängungsreaktionen zwischen Proteinen und markierten Zielsträngen wurden anhand von SPS und Fluorezenzkinetiken studiert.
Resumo:
CONCLUSIONS The focus of this work was the investigation ofanomalies in Tg and dynamics at polymer surfaces. Thethermally induced decay of hot-embossed polymer gratings isstudied using laser-diffraction and atomic force microscopy(AFM). Monodisperse PMMA and PS are selected in the Mwranges of 4.2 to 65.0 kg/mol and 3.47 to 65.0 kg/mol,respectively. Two different modes of measurement were used:the one mode uses temperature ramps to obtain an estimate ofthe near-surface glass temperature, Tdec,0; the other modeinvestigates the dynamics at a constant temperature aboveTg. The temperature-ramp experiments reveal Tdec,0 valuesvery close to the Tg,bulk values, as determined bydifferential scanning calorimetry (DSC). The PMMA of65.0 kg/mol shows a decreased value of Tg, while the PS samples of 3.47 and 10.3 kg/mol (Mw
Resumo:
Over the last three decades, sensors based on the phenomenon of surface plasmon resonance have proven particularly suitable for real time thin film characterization, gas detection, biomolecular interaction examination and to supplement electrochemical methods. Systems based on prism coupling have been combined with fluorescence detection under the name of surface plasmon fluorescence spectroscopy to increase sensitivity even further. Alternatively, metal gratings can be employed to match photons for plasmon resonance. The real time monitoring of binding reactions not yet been reported in the combination of fluorescence detection and grating coupling. Grating-based systems promise more competitive products, because of reduced operating costs, and offer benefits for device engineering. This thesis is comprised of a comprehensive study of the suitability of grating coupling for fluorescence based analyte detection. Fundamental properties of grating coupled surface plasmon fluorescence spectroscopy are described, as well as issues related to the commercial realization of the method. Several new experimental techniques are introduced and demonstrated in order to optimize performance in certain areas and improve upon capabilities in respect to prism-based systems. Holographically fabricated gratings are characterized by atomic force microscopy and optical methods, aided by simulations and profile parameters responsible for efficient coupling are analyzed. The directional emission of fluorophores immobilized on a grating surface is studied in detail, including the magnitude and geometry of the fluorescence emission pattern for different grating constants and polarizations. Additionally, the separation between the minimum of the reflected intensity and the maximum fluorescence excitation position is examined. One of the key requirements for the commercial feasibility of grating coupling is the cheap and faithful mass production of disposable samples from a given master grating. The replication of gratings is demonstrated by a simple hot embossing method with good reproducibility to address this matter. The in-situ fluorescence detection of analyte immobilization and affinity measurements using grating coupling are described for the first time. The physical factors related to the sensitivity of the technique are assessed and the lower limit of detection of the technique is determined for an exemplary assay. Particular attention is paid to the contribution of bulk fluorophores to the total signal in terms of magnitude and polarization of incident and emitted light. Emission from the bulk can be a limiting factor for experiments with certain assay formats. For that reason, a novel optical method, based on the modulation of both polarization and intensity of the incident beam, is introduced and demonstrated to be capable of eliminating this contribution.
Resumo:
Silicon-on-insulator (SOI) is rapidly emerging as a very promising material platform for integrated photonics. As it combines the potential for optoelectronic integration with the low-cost and large volume manufacturing capabilities and they are already accumulate a huge amount of applications in areas like sensing, quantum optics, optical telecommunications and metrology. One of the main limitations of current technology is that waveguide propagation losses are still much higher than in standard glass-based platform because of many reasons such as bends, surface roughness and the very strong optical confinement provided by SOI. Such high loss prevents the fabrication of efficient optical resonators and complex devices severely limiting the current potential of the SOI platform. The project in the first part deals with the simple waveguides loss problem and trying to link that with the polarization problem and the loss based on Fabry-Perot Technique. The second part of the thesis deals with the Bragg Grating characterization from again the point of view of the polarization effect which leads to a better stop-band use filters. To a better comprehension a brief review on the basics of the SOI and the integrated Bragg grating ends up with the fabrication techniques and some of its applications will be presented in both parts, until the end of both the third and the fourth chapters to some results which hopefully make its precedent explanations easier to deal with.
Resumo:
This thesis investigates metallic nanostructures exhibiting surface plasmon resonance for the amplification of fluorescence signal in sandwich immunoassays. In this approach, an analyte is captured by an antibody immobilized on a plasmonic structure and detected by a subsequently bound fluorophore labeled detection antibody. The highly confined field of surface plasmons originates from collective charge oscillations which are associated with high electromagnetic field enhancements at the metal surface and allow for greatly increased fluorescence signal from the attached fluorophores. This feature allows for improving the signal-to-noise ratio in fluorescence measurements and thus advancing the sensitivity of the sensor platform. In particular, the thesis presents two plasmonic nanostructures that amplify fluorescence signal in devices that rely on epifluorescence geometry, in which the fluorophore absorbs and emits light from the same direction perpendicular to the substrate surface.rnThe first is a crossed relief gold grating that supports propagating surface plasmon polaritons (SPPs) and second, gold nanoparticles embedded in refractive index symmetric environment exhibiting collective localized surface plasmons (cLSPs). Finite-difference time-domain simulations are performed in order to design structures for the optimum amplification of established Cy5 and Alexa Fluor 647 fluorophore labels with the absorption and emission wavelengths in the red region of spectrum. The design takes into account combined effect of surface plasmon-enhanced excitation rate, directional surface plasmon-driven emission and modified quantum yield for characteristic distances in immunoassays. Homebuilt optical instruments are developed for the experimental observation of the surface plasmon mode spectrum, measurements of the angular distribution of surface plasmon-coupled fluorescence light and a setup mimicking commercial fluorescence reading systems in epifluorescence geometry.rnCrossed relief grating structures are prepared by interference lithography and multiple copies are made by UV nanoimprint lithography. The fabricated crossed diffraction gratings were utilized for sandwich immunoassay-based detection of the clinically relevant inflammation marker interleukin 6 (IL-6). The enhancement factor of the crossed grating reached EF=100 when compared to a flat gold substrate. This result is comparable to the highest reported enhancements to date, for fluorophores with relatively high intrinsic quantum yield. The measured enhancement factor excellently agrees with the predictions of the simulations and the mechanisms of the enhancement are explained in detail. Main contributions were the high electric field intensity enhancement (30-fold increase) and the directional fluorescence emission at (4-fold increase) compared to a flat gold substrate.rnCollective localized surface plasmons (cLSPs) hold potential for even stronger fluorescence enhancement of EF=1000, due to higher electric field intensity confinement. cLSPs are established by diffractive coupling of the localized surface plasmon resonance (LSPR) of metallic nanoparticles and result in a narrow resonance. Due to the narrow resonance, it is hard to overlap the cLSPs mode with the absorption and emission bands of the used fluorophore, simultaneously. Therefore, a novel two resonance structure that supports SPP and cLSP modes was proposed. It consists of a 2D array of cylindrical gold nanoparticles above a low refractive index polymer and a silver film. A structure that supports the proposed SPP and cLSP modes was prepared by employing laser interference lithography and the measured mode spectrum was compared to simulation results.rn
Resumo:
We present the design, fabrication, and testing of a microelectromechanical systems (MEMS) light modulator based on pixels patterned with periodic nanohole arrays. Flexure-suspended silicon pixels are patterned with a two dimensional array of 150 nm diameter nanoholes using nanoimprint lithography. A top glass plate assembled above the pixel array is used to provide a counter electrode for electrostatic actuation. The nanohole pattern is designed so that normally-incident light is coupled into an in-plane grating resonance, resulting in an optical stop-band at a desired wavelength. When the pixel is switched into contact with the top plate, the pixel becomes highly reflective. A 3:1 contrast ratio at the resonant wavelength is demonstrated for gratings patterned on bulk Si substrates. The switching time is 0.08 ms and the switching voltage is less than 15V.
Resumo:
Landscape evolution and surface morphology in mountainous settings are a function of the relative importance between sediment transport processes acting on hillslopes and in channels, modulated by climate variables. The Niesen nappe in the Swiss Penninic Prealps presents a unique setting in which opposite facing flanks host basins underlain by identical lithologies, but contrasting litho-tectonic architectures where lithologies either dip parallel to the topographic slope or in the opposite direction (i.e. dip slope and non-dip slope). The north-western facing Diemtigen flank represents such a dip slope situation and is characterized by a gentle topography, low hillslope gradients, poorly dissected channels, and it hosts large landslides. In contrast, the south-eastern facing Frutigen side can be described as non-dip slope flank with deeply incised bedrock channels, high mean hillslope gradients and high relief topography. Results from morphometric analysis reveal that noticeable differences in morphometric parameters can be related to the contrasts in the relative importance of the internal hillslope-channel system between both valley flanks. While the contrasting dip-orientations of the underlying flysch bedrock has promoted hillslope and channelized processes to contrasting extents and particularly the occurrence of large landslides on the dip slope flank, the flank averaged beryllium-10 (10Be)-derived denudation rates are very similar and range between 0.20 and 0.26 mm yr−1. In addition, our denudation rates offer no direct relationship to basin's slope, area, steepness or concavity index, but reveal a positive correlation to mean basin elevation that we interpret as having been controlled by climatically driven factors such as frost-induced processes and orographic precipitation. Our findings illustrate that while the landscape properties in this part of the northern Alpine border can mainly be related to the tectonic architecture of the underlying bedrock, the denudation rates have a strong orographic control through elevation dependent mean annual temperature and precipitation.
Resumo:
Hybrid molds enable the fabrication of polymeric parts with features of different length scales by injection molding. The resulting polymer microelements combine optical or biological functionalities with designed mechanical properties. Two applications are chosen for illustration of this concept: As a first example, microelements for optical communication via fiber-to-fiber coupling are manufactured by combining two molds to a small mold insert. Both molds are fabricated using lithography and electroplating. As a second example, microcantilevers (μCs) for chemical sensing are surface patterned using a modular mold composed of a laser-machined cavity defining the geometry of the μCs, and an opposite flat tool side which is covered by a patterned polymer foil. Injection molding results in an array of 35 μm-thick μCs with microscale surface topographies. In both cases, when the mold is assembled and closed, reliefs are transferred onto one surface of the molded element whose outlines are defined by the micromold cavity. The main advantage of these hybrid methods lies in the simple integration of optical surface structures and gratings onto the surface of microcomponents with different sizes and orientations. This allows for independent development of functional properties and combinations thereof.
Resumo:
BACKGROUND Pressure ulcers are associated with severe impairment for the patients and high economic load. With this study we wanted to gain more insight to the skin perfusion dynamics due to external loading. Furthermore, we evaluated the effect of different types of pressure relief mattresses. METHODS A total of 25 healthy volunteers were enrolled in the study. Perfusion dynamics of the sacral and the heel area were assessed using the O2C-device, which combines a laser light, to determine blood flow, and white light to determine the relative amount of hemoglobin. Three mattresses were evaluated compared to a hard surface: a standard hospital foam mattress bed, a visco-elastic foam mattress, and an air-fluidized bed. RESULTS In the heel area, only the air-fluidized bed was able to maintain the blood circulation (mean blood flow of 13.6 ± 6 versus 3.9 ± 3 AU and mean relative amount of hemoglobin of 44.0 ± 14 versus 32.7 ± 12 AU.) In the sacral area, all used mattresses revealed an improvement of blood circulation compared to the hard surface. CONCLUSION The results of this study form a more precise pattern of perfusion changes due to external loading on various pressure relief mattresses. This knowledge may reduce the incidence of pressure ulcers and may be an influencing factor in pressure relief mattress selection.