951 resultados para Surface plasmon


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work we report the characterization of PbO-GeO(2) films containing silver nanoparticles (NPs). Radio Frequency (RF) co-sputtering was used for deposition of amorphous films on glass substrates. Targets of 60PbO-40GeO(2) (in wt%) and bulk silver with purity of 99.99% were RF-sputtered using 3.5 m Torr of argon. The concentration of silver and gold NPs in the films was controlled varying the RF-power applied to the targets (40-50W for the PbO-GeO(2) target; 6-8 W for the metallic target). The films obtained were annealed in air at different temperatures and various periods of time. Absorption measurements have shown strong NPs surface plasmon bands. Different widths and peak wavelengths were observed, indicating that size, shape and distribution of the silver NPs are dependent on the deposition process parameters and on the annealing of the samples. X-Ray Fluorescence and Transmission Electron Microscopy were also used to characterize the samples. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monoclonal antibodies (MAb) have been commonly applied to measure LDL in vivo and to characterize modifications of the lipids and apoprotein of the LDL particles. The electronegative low density lipoprotein (LDL(-)) has an apolipoprotein B-100 modified at oxidized events in vivo. In this work, a novel LDL-electrochemical biosensor was developed by adsorption of anti-LDL(-) MAb on an (polyvinyl formal)-gold nanoparticles (PVF-AuNPs)-modified gold electrode. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize the recognition of LDL-. The interaction between MAb-LDL(-) leads to a blockage in the electron transfer of the [Fe(CN)(6)](4-)/K(4)[Fe(CN)(6)](3-) redox couple, which may could result in high change in the electron transfer resistance (R(CT)) and decrease in the amperometric responses in CV analysis. The compact antibody-antigen complex introduces the insulating layer on the assembled surface, which increases the diameter of the semicircle, resulting in a high R(CT), and the charge transferring rate constant k(0) decreases from 18.2 x 10(-6) m/s to 4.6 x 10(-6) m/s. Our results suggest that the interaction between MAb and lipoprotein can be quantitatively assessed by the modified electrode. The PVF-AuNPs-MAb system exhibited a sensitive response to LDL(-), which could be used as a biosensor to quantify plasmatic levels of LDL(-). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this review is to summarize developments in the use of quantitative affinity chromatography to determine equilibrium constants for solute interactions of biological interest. Affinity chromatography is an extremely versatile method for characterizing interactions between dissimilar reactants because the biospecificity incorporated into the design of the affinity matrix ensures applicability of the method regardless of the relative sizes of the two reacting solutes. Adoption of different experimental strategies, such as column chromatography, simple partition equilibrium experiments, solid-phase immunoassay, and biosensor technology, has led to a situation whereby affinity chromatography affords a means of characterizing interactions governed by an extremely broad range of binding affinities-relatively weak interactions (binding constants below 10(3) M-1) through to interactions with binding constants in excess of 10(9) M-1. In addition to its important role in solute separation and purification, affinity chromatography thus also possesses considerable potential for investigating the functional roles of the reactants thereby purified. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose - To study the influence of protein structure on the immunogenicity in wildtype and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods - RhIFNα2b was degraded by metal catalyzed oxidation (M), crosslinking with glutaraldehyde (G), oxidation with hydrogen peroxide (H) and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reversed-phase HPLC, SDS-PAGE, Western blotting and mass spectrometry. The immunogenicity of the products was evaluated in wildtype mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by ELISA or surface plasmon resonance. Results - M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Native (N) rhIFNα2b was immunogenic in the wildtype mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The antirhIFNα2b antibody levels in the wildtype mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ~ N-rhIFNα2b >> B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions - RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: This study was conducted to study the influence of protein structure on the immunogenicity in wild-type and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods: RhIFNα2b was degraded by metal-catalyzed oxidation (M), cross-linking with glutaraldehyde (G), oxidation with hydrogen peroxide (H), and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reverse-phase high-pressure liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and mass spectrometry. The immunogenicity of the products was evaluated in wild-type mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by enzyme-linked immunosorbent assay or surface plasmon resonance. Results: M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Nontreated (N) rhIFNα2b was immunogenic in the wild-type mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The anti-rhIFNα2b antibody levels in the wild-type mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ∼ N-rhIFNα2b ≫ B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions: RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation submitted for obtainment of the Master’s Degree in Biotechnology, by the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Biológica – especialidade Engenharia Genética, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The properties of surface plasmon-polaritons (SPPs) in graphene are discussed and several possible ways of coupling electromagnetic radiation in the terahertz (THz) spectral range to this type of surface waves are described: (i) the attenuated total reflection (ATR) method employing a prism, (ii) graphene-based gratings or graphene monolayers with modulated conductivity, (iii) a metal stripe on top of the graphene layer, and (iv) a nanoparticle located above it. Potentially interesting for applications SPP effects, such as switching, modulation and polarization of THz radiation, as well as its enhanced absorption in graphene, are considered. The discussion also concerns the impact of the nonlinear properties of graphene, such as optical bistability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work it was studied the possible use of thin films, composed of Au nanoparticles (NPs) embedded in a TiO2 matrix, in biological applications, by evaluating their interaction with a well-known protein, Bovine Serum Albumin (BSA), as well as with microbial cells (Candida albicans). The films were produced by one-step reactive DC magnetron sputtering followed by heat-treatment. The samples revealed a composition of 8.3 at.% of Au and a stoichiometric TiO2 matrix. The annealing promoted grain size increase of the Au NPs from 3 nm (at 300 °C) to 7 nm (at 500 °C) and a progressive crystallization of the TiO2 matrix to anatase. A broad localized surface plasmon resonance (LSPR) absorption band (λ = 580–720 nm) was clearly observed in the sample annealed at 500 °C, being less intense at 300 °C. The biological tests indicated that the BSA adhesion is dependent on surface nanostructure morphology, which in turn depends on the annealing temperature that changed the roughness and wettability of the films. The Au:TiO2 thin films also induced a significant change of the microbial cell membrane integrity, and ultimately the cell viability, which in turn affected the adhesion on its surface. The microstructural changes (structure, grain size and surface morphology) of the Au:TiO2 films promoted by heat-treatment shaped the amount of BSA adhered and affected cell viability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Noble metal powders containing gold and silver have been used for many centuries, providing different colours in the windows of the medieval cathedrals and in ancient Roman glasses. Nowadays, the interest in nanocomposite materials containing noble nanoparticles embedded in dielectric matrices is related with their potential use for a wide range of advanced technological applications. They have been proposed for environmental and biological sensing, tailoring colour of functional coatings, or for surface enhanced Raman spectroscopy. Most of these applications rely on the so-called localised surface plasmon resonance absorption, which is governed by the type of the noble metal nanoparticles, their distribution, size and shape and as well as of the dielectric characteristics of the host matrix. The aim of this work is to study the influence of the composition and thermal annealing on the morphological and structural changes of thin films composed of Ag metal clusters embedded in a dielectric TiO2 matrix. Since changes in size, shape and distribution of the clusters are fundamental parameters for tailoring the properties of plasmonic materials, a set of films with different Ag concentrations was prepared. The optical properties and the thermal behaviour of the films were correlated with the structural and morphological changes promoted by annealing. The films were deposited by DC magnetron sputtering and in order to promote the clustering of the Ag nanoparticles the as-deposited samples were subjected to an in-air annealing protocol. It was demonstrated that the clustering of metallic Ag affects the optical response spectrum and the thermal behaviour of the films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado em Biofísica e Bionanossistemas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cancer is a major burden in today's society and one of the leading causes of death in industrialised countries. Various avenues for the detection of cancer exist, most of which rely on standard methods, such as histology, ELISA, and PCR. Here we put the focus on nanomechanical biosensors derived from atomic force microscopy cantilevers. The versatility of this novel technology has been demonstrated in different applications and in some ways surpasses current technologies, such as microarray, quartz crystal microbalance and surface plasmon resonance. The technology enables label free biomarker detection without the necessity of target amplification in a total cellular background, such as BRAF mutation analysis in malignant melanoma. A unique application of the cantilever array format is the analysis of conformational dynamics of membrane proteins associated to surface stress changes. Another development is characterisation of exhaled breath which allows assessment of a patient's condition in a non-invasive manner.