943 resultados para Surface characterization
Resumo:
The adsorbed kinetics, proton transportation in electrochemical redox process of 4-pyridyl hydroquinone (4PHQ) self-assembled monolayer (SAM) modified Pt electrode were studied by electrochemical quartz crystal microbalance (EQCM) in situ. It proved that the electrode was modified by a monolayer and underwent a rapid electron transfer. It was a slow adsorbed kinetic process. The ion transfer in the electrochemical redox at the SAM-modified electrode surface mainly involved into the hydrate hydrogen ion.
Resumo:
In this paper, an organic-inorganic composite film of heteropolyanion was Formed by attaching a Keggin-type heteropolyanion, SiW12O404-, on carbon electrode surface derivatized by 4-aminophenyl monolayer. The composite film thus grafted on carbon electrode surface has good stability because of the ionic bonding character between SiW12O404- and surface aminophenyl groups. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and cyclic voltammetry were used to characterize the composite film. Compared with SiW12O404- electrodeposited on a bare glassy carbon electrode (GCE), the composite film gives three more sharp and well-defined redox couples attributed to two one- and two-electron processes, and the analyses of the voltammograms of SiW12O404- anion in the composite film modified on GCE shows that its surface coverage is close to a closest packing monolayer. STM characterization shows that a two-dimensional order heteropolyanion monolayer was formed on HOPG substrate. The composite film provides a favorable environment for electron and proton transfer between SiW12O404- ion and electrode surface, which may make it suitable for various applications in sensors and microelectronics devices.
Resumo:
The soft x-ray reflectivity of multilayer films is affected by the surface roughness on the transverse nanometer scale. Scanning tunneling microscopy (STM) is an ideal instrument for providing high-lateral-resolution roughness measurements for soft x-ray multilayer films that cannot be obtained with other types of instruments on the transverse nanometer scale. The surface roughnesses of Mo/Si, Mo/C, and W/Si soft x-ray multilayer films prepared by an ion-beam-sputtering technique were measured with a STM on the vertical and transverse attributes. The film roughnesses and average spatial wavelengths added to the substrates depend on the multilayer film fabrication conditions, i.e., material combinations, number of layers, and individual layer thickness. These were estimated to lead to a loss of specular reflectivity and variations of the soft x-ray scattering angle distribution. This method points the way to further studies of soft x-ray multilayer film functional properties and can be used as basic guidance for selecting the best coating conditions in the fabrications of soft x-ray multilayer films. (C) 1996 American Vacuum Society.
Resumo:
Nanosized stannic oxide particles modified with a layer of DBS were successfully prepared through the colloidal chemical method and their microstructures were characterized. FTIR and XPS were used for the determination of the main components. It can be proved that the nanosized SnO2 particles were capped by DBS. The sizes of particle were determined by TEM and XRD. By the investigation of XPS, we can conclude that there are a lot of oxygen vacancies in the surface of the nanoparticulates. Based on this conclusion, the ESR signal of the sample can be explained.
Resumo:
Mesoporous spinel membranes as ultrafiltration membranes were prepared through a novel sol-gel technique. By in situ modification of the sol particle surface during the sol-gel process, control of the material structure on a nanometer scale from the earliest stages of processing was realized. Nano-particles with a chocolate-nut-like morphology, i.e. spinel MgAl2O4 as a shell and gamma -Al2O3 as a core, were first revealed by HRTEM results. The formation of the spinel phase was confirmed by X-ray diffraction (XRD). N-2 adsorption-desorption results showed that the mesoporous membranes had a narrow pore size distribution. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
When highly charged ions are incident on a surface, part of their potential energy is emitted as characteristic radiation. The energies and yields of these characteristic x rays have been measured for a series of elements at the Tokyo electron-beam ion trap. These data have been used to develop a simple model of the relaxation of the hollow atoms which are formed as the ion approaches the surface, as well as a set of semiempirical scaling laws, which allow for the ready calculation of the K-shell x-ray spectrum which would be produced by an arbitrary slow bare or hydrogenlike ion on a surface. These semiempirical scaling laws can be used to assess the merit of highly charged ion fluorescence x-ray generation in a wide range of applications.
Resumo:
Novel Ag on TiO2 films are generated by semiconductor photocatalysis and characterized by ultraviolet-visible (UV/Vis) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM), as well as assessed for surface-enhanced Raman scattering (SERS) activity. The nature and thickness of the photodeposited Ag, and thus the degree of SERS activity, is controlled by the time of exposure of the TiO2 film to UV light. All such films exhibit the optical characteristics (λmax ≅ 390 nm) of small (<20 nm) Ag particles, although this feature becomes less prominent as the film becomes thicker. The films comprise quite large (>40 nm) Ag islands that grow and merge with increasing levels of Ag photodeposition. Tested with a benzotriazole dye probe, the films are SERS active, exhibiting activity similar to that of 6-nm-thick vapordeposited films. The Ag/TiO2 films exhibit a lower residual standard deviation (∼25%) compared with Ag vapor-deposited films (∼45%), which is, however, still unacceptable for quantitative work. The sample-to-sample variance could be reduced significantly (<7%) by spinning the film during the SERS measurement. The Ag/TiO2 films are mechanically robust and resistant to removal and damage by scratching, unlike the Ag vapor-deposited films. The Ag/TiO2 films also exhibit no obvious loss of SERS activity when stored in the dark under otherwise ambient conditions. The possible extension of this simple, effective method of producing Ag films for SERS, to metals other than Ag and to semiconductors other than TiO2, is briefly discussed.
Resumo:
Using the Otto (prism-air gap-sample) configuration p-polarized light of wavelength 632.8 nm has been coupled with greater than 80% efficiency to surface plasmons on the aluminium electrode of silicon-silicon dioxide-aluminium structures. The results show that if the average power per unit area dissipated on the metal film exceeds approximately 1 mW mm-2, then the coupling gap and thus the characteristics of the surface plasmon resonance are noticeably altered. In modelling the optical response of such systems the inclusion of both a non-uniform air coupling gap and a thin cermet layer at the aluminium surface may be necessary.
Resumo:
Visible light is emitted from the Au-air interface of Al-I-Au thin-film tunnel junctions (deposited over a thin layer of CaF2 on glass) as a result of the decay of surface plasmon polaritons (SPPs). We show the surface topography of such a Au film and relate its large-scale features to the outcoupling of fast SPP's to photons. The absence of short-scale roughness features is explained by thier disappearance through surface diffusion. To confirm this a controlled sequence of 5-nm, 20-ms scanning tunneling microscope (STM) W tip crashes has been used to produce indentations 3 nm deep with a lateral dimension of 5-7 nm on a Au crystal in air at room temperature. Four sequences of indentations were drawn in the form of a square box. Right from the start, feature decay is observed and over a period of 2 h a succession of images shows that the structure disappears into the background as a result of surface diffusion. The surface diffusion constant is estimated to be 10(-18) cm2 s-1. The lack of light output via slow mode SPPs is an inevitable consequence of surface annealing.
Resumo:
Doutoramento em Bioquímica
Resumo:
Cell surface proteins obtained by alkaline extraction from isolated cell walls of Mortierella pusilla and M. candelabrum, host and nonhost, respectively, to the mycoparasite, Piptocephalis virginiana, were tested for their ability to agglutinate mycoparasite spores. The host cell wall protein extract had a high agglutinating activity (788 a.u. mg- t ) as compared with the nonhost extract (21 a.li. mg- t ). SDS-polyacrylamide gel electrophoresis of the cell wall proteins revealed four protein bands, a, b, c, and d (Mr 117, 100, 85 and 64 kd, respectively) at the host surface, but not at the nonhost surface, except for the faint band c. Deletion of proteins b or c from the host cell wall protein extract significantly reduced its agglutinating activity. Proteins band c, obtained as purified preparations by a series of procedures, were shown to be two glycoproteins. Carbohydrate analysis by gas chromatography demonstrated that glucose and Nacetylglucosamine were the major carbohydrate components of the glycoproteins. It was further shown that the agglutinating activity of the pure preparation containing both band c was 500-850 times that of the single glycoproteins, suggesting the involvement of both glycoproteins in agglutination. The results suggest that the glycoproteins band c are the two subunits of agglutinin present at the host cell surface. The two glycoproteins band c purified from the host cell wall protein extract were further examined after various treatments for their possible role in agglutination, attachment and appressorium formation by the mycoparasite. Results obtained by agglutination and attachment tests showed: (1) the two glycoprotein-s are not only an agglutinin responsible for the mycoparasite spore agglutination, but may also serve as a receptor for the specific recognition, attachment and appressorium formation by the mycoparasite; (2) treatment of the rnycoparasite spores with various sugars revealed that arabinose, glucose and N-acetylglucosamine inhibited the agglutination and attachment activity of the glycoproteins, however, the relative percentage of appressorium formation was not affected by the above sugars; (3) the two glycoproteins are relatively stable with respect to their agglutinin and receptor functions. The present results suggest that the agglutination and attachment may be mediated directly by certain sugars present at the host and mycoparasite cell surfaces while the appressorlum formation may be the response of complementary combinations of both sugar and protein, the two parts of the glycoproteins at the interacting surfaces of two fungi.