998 resultados para Surface approximation
Resumo:
The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.
Resumo:
In this work, we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of acrylic acid (AAc) and vinylacetic acid (VAA) on the silicon surface. Our total energy calculations support the proposed experimental process, as it indicates that the chemisorption of the molecule is as follows: The gas phase VAA (AAc) adsorbs molecularly to the electrophilic surface Si atom and then dissociates into H(2)C = CH - COO and H, bonded to the electrophilic and nucleophilic surface silicon dimer atoms, respectively. The activation energy for both processes correspond to thermal activations that are smaller than the usual growth temperature. In addition, the electronic structure, calculated vibrational modes, and theoretical scanning tunneling microscopy images are discussed, with a view to contribute to further experimental investigations.
Resumo:
We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at the BNL Relativistic Heavy Ion Collider (RHIC). Pairs of back-to-back high-transverse-momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two-and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudorapidity Delta eta or relative azimuthal angle Delta phi from d + Au to central Au + Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.
Resumo:
We study the spin-1/2 Ising model on a Bethe lattice in the mean-field limit, with the interaction constants following one of two deterministic aperiodic sequences, the Fibonacci or period-doubling one. New algorithms of sequence generation were implemented, which were fundamental in obtaining long sequences and, therefore, precise results. We calculate the exact critical temperature for both sequences, as well as the critical exponents beta, gamma, and delta. For the Fibonacci sequence, the exponents are classical, while for the period-doubling one they depend on the ratio between the two exchange constants. The usual relations between critical exponents are satisfied, within error bars, for the period-doubling sequence. Therefore, we show that mean-field-like procedures may lead to nonclassical critical exponents.
Resumo:
PANI films were deposited on glass substrates by in-situ polymerization and characterized by UV-VIS spectroscopy and atomic force microscopy. A method is developed to accurately analyze ellipsometric data obtained for transparent glass substrates before and after modification with absorbing polymer films. Surface modification was made with an overlayer such as polyaniline ( PANI), which exhibits different optical properties by varying its oxidation state. First, the issue of using transparent substrates for ellipsometry studies was examined and then, spectroscopic ellipsometry was used to characterize absorbing overlayers on transparent glasses. The same methodologies of data analysis can be also applied to other absorbing films on transparent substrates, and deposited by different techniques.
Resumo:
Data collected at the Pierre Auger Observatory are used to establish an upper limit on the diffuse flux of tau neutrinos in the cosmic radiation. Earth-skimming nu(tau) may interact in the Earth's crust and produce a tau lepton by means of charged-current interactions. The tau lepton may emerge from the Earth and decay in the atmosphere to produce a nearly horizontal shower with a typical signature, a persistent electromagnetic component even at very large atmospheric depths. The search procedure to select events induced by tau decays against the background of normal showers induced by cosmic rays is described. The method used to compute the exposure for a detector continuously growing with time is detailed. Systematic uncertainties in the exposure from the detector, the analysis, and the involved physics are discussed. No tau neutrino candidates have been found. For neutrinos in the energy range 2x10(17) eV < E(nu)< 2x10(19) eV, assuming a diffuse spectrum of the form E(nu)(-2), data collected between 1 January 2004 and 30 April 2008 yield a 90% confidence-level upper limit of E(nu)(2)dN(nu tau)/dE(nu)< 9x10(-8) GeV cm(-2) s(-1) sr(-1).
Resumo:
The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M(13). First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first- principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M(13) structures. Several new lower energy configurations were identified, e. g., Pd(13), W(13), Pt(13), etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au(13), we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.
Resumo:
A 260 nm layer of organic bulk heterojunction blend of the polymer poly(3-hexylthiophene) (P3HT) and the fullerene [6,6]-phenyl C(61)-butyric (PCBM) was spin-coated in between aluminum and gold electrodes, respectively, on top of a laser inscribed azo polymer surface-relief diffraction grating. Angle-dependent surface plasmons (SPs) with a large band gap were observed in the normalized photocurrent by the P3HT-PCBM layer as a function of wavelength. The SP-induced photocurrents were also investigated as a function of the grating depth and spacing.
Resumo:
Measurement of the transmitted intensity from a coherent monomode light source through a series of subwavelength slit arrays in Ag films, with varying array pitch and number of slits, demonstrates enhancement (suppression) by factors of as much as 6 (9) when normalized to the transmission efficiency of an isolated slit. Pronounced minima in the transmitted intensity are observed at array pitches corresponding to lambda(SPP), 2 lambda(SPP), and 3 lambda(SPP), where lambda(SPP) is the wavelength of the surface plasmon polariton (SPP). The position of these minima arises from destructive interference between incident propagating waves and pi-phase-shifted SPP waves. Increasing the number of slits to four or more does not increase appreciably the per-slit transmission intensity. A simple interference model fits well the measured transmitted intensity profile.
Resumo:
We have systematically studied the magnetic properties of ferrite nanoparticles with 3, 7, and 11 nm of diameter with very narrow grain size distributions. Samples were prepared by the thermal decomposition of Fe (acac)(3) in the presence of surfactants giving nanoparticles covered by oleic acid. High resolution transmission electron microscopy (HRTEM) images and XRD diffraction patterns confirms that all samples are composed by crystalline nanoparticles with the spinel structure expected for the iron ferrite. ac and dc magnetization measurements, as well in-field Mossbauer spectroscopy, indicate that the magnetic properties of nanoparticles with 11 and 7 nm are close to those expected for a monodomain, presenting large M(S) (close to the magnetite bulk). Despite the crystalline structure observed in HRTEM images, the nanoparticles with 3 nm are composed by a magnetically ordered region (core) and a surface region that presents a different magnetic order and it contains about 66% of Fe atoms. The high saturation and irreversibility fields in the M(H) loops of the particles with 3 nm together with the misalignment at 120 kOe in the in-field Mossbauer spectrum of surface component indicate a high surface anisotropy for the surface atoms, which is not observed for the core. For T < 10 K, we observe an increase in the susceptibility and of the magnetization for former sample, indicating that surface moments tend to align with applied field increasing the magnetic core size. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514585]
Resumo:
Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3615545]
Resumo:
The behavior of Au nanorods and Ag nanocubes as analytical sensors was evaluated for three different classes of herbicides. The use of such anisotropic nanoparticles in surface-enhanced Raman scattering (SERS) experiments allows the one to obtain the spectrum of crystal violet dye in the single molecule regime, as well as the pesticides dichlorophenoxyacetic acid (2,4-D), trichlorfon and ametryn. Such metallic substrates show high SERS performance at low analyte concentrations making them adequate for use as analytical sensors. Density functional theory (DFT) calculations of the geometries and vibrational wavenumbers of the adsorbates in the presence of silver or gold atoms were used to elucidate the nature of adsorbate-nanostructure bonding in each case and support the enhancement patterns observed in each SERS spectrum.
Resumo:
The use of chromic materials for responsive surface-enhanced resonance Raman scattering (SERRS) based nanosensors is reported. The potential of nano-chromic SERRS is demonstrated with the use of the halochrome methyl yellow to fabricate an ultrasensitive pH optical sensor. Some of the challenges of the incorporation of chromic materials with metal nanostructures are addressed through the use of computational calculations and a comparison to measured SERRS and surface-enhanced Raman scattering (SERS) spectra is presented. A strong correlation between the measured SERRS and the medium's proton concentration is demonstrated for the pH range 2-6. The high sensitivity achieved by the use of resonance Raman conditions is shown through responsive SERRS measurements from only femtolitres of volume and with the concentration of the reporting molecules approaching the single molecule regime.
Resumo:
Ethanol oxidation has been studied on Pt(111), Pt(100) and Pt(110) electrodes in order to investigate the effect of the surface structure and adsorbing anions using electrochemical and FTIR techniques. The results indicate that the surface structure and anion adsorption affect significantly the reactivity of the electrode. Thus, the main product of the oxidation of ethanol on the Pt(111) electrode is acetic acid, and acetaldehyde is formed as secondary product. Moreover, the amount of CO formed is very small, and probably associated with the defects present on the electrode surface. For that reason, the amount of CO(2) is also small. This electrode has the highest catalytic activity for the formation of acetic acid in perchloric acid. However, the formation of acetic acid is inhibited by the presence of specifically adsorbed anions, such as (bi) sulfate or acetate, which is the result of the formation of acetic acid. On the other hand, CO is readily formed at low potentials on the Pt(100) electrode, blocking completely the surface. Between 0.65 and 0.80 V, the CO layer is oxidized and the production of acetaldehyde and acetic acid is detected. The Pt(110) electrode displays the highest catalytic activity for the splitting of the C-C bond. Reactions giving rise to CO formation, from either ethanol or acetaldehyde, occur at high rate at any potential. On the other hand, the oxidation of acetaldehyde to acetic acid has probably the lower reaction rate of the three basal planes.
Resumo:
Cuboctahedron (CUB) and icosahedron (ICO) model structures are widely used in the study of transition-metal (TM) nanoparticles (NPs), however, it might not provide a reliable description for small TM NPs such as the Pt(55) and Au(55) systems in gas phase. In this work, we combined density-functional theory calculations with atomic configurations generated by the basin hopping Monte Carlo algorithm within the empirical Sutton-Chen embedded atom potential. We identified alternative lower energy configurations compared with the ICO and CUB model structures, e. g., our lowest energy structures are 5.22 eV (Pt(55)) and 2.01 eV (Au(55)) lower than ICO. The energy gain is obtained by the Pt and Au diffusion from the ICO core region to the NP surface, which is driven by surface compression (only 12 atoms) on the ICO core region. Therefore, in the lowest energy configurations, the core size reduces from 13 atoms (ICO, CUB) to about 9 atoms while the NP surface increases from 42 atoms (ICO, CUB) to about 46 atoms. The present mechanism can provide an improved atom-level understanding of small TM NPs reconstructions.