889 resultados para Surface Treatment


Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJETIVO: Estudar a superfície de implantes osseointegráveis utilizando discos de titânio irradiados com feixe de laser. MÉTODOS: A amostra foi irradiada com feixes de laser de alta intensidade (Nd-YAG), posteriormente depositado hidróxiapatita e submetido a tratamento térmico. Foi analisada sob MEV (Microscópio Eletrônico de Varredura) e realizada análise morfológica qualitativa com microfotografias em vários aumentos. RESULTADOS: A superfície irradiada com laser apresentou deformidade superficial e característica isomórfica; a aplicação de hidroxiapatita pelo método de biomimético aumentou quantitativamente a área da superfície de titânio. CONCLUSÃO: A deposição de hidroxiapatita apresentou melhor característica isomórfica e aumento quantitativo da área superficial estudada, a amostra demonstrou características não encontradas nos implantes disposto no mercado.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Considering the potential of the association between laser ablation and smaller scale hydroxyapatite (HA) coatings to create a stable and bioactive surface on titanium dental implants, the aim of the present study was to determine, by the removal torque test, the effects of a surface treatment created by laser-ablation (Nd:YAG) and, later, thin deposition of HA particles by a chemical process, compared to implants with only laser-ablation and implants with machined surfaces.Materials and Methods: Forty-eight rabbits received I implant by tibia of the following surfaces: machined surface (MS), laser-modified surface (LMS), and biomimetic hydroxiapatite coated surface (HA). After 4, 8, and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition, and roughness.Results: Average removal torque in each period was 23.28, 24.0, and 33.85 Ncm to MS, 33.0, 39.87, and 54.57 Ncm to LMS, and 55.42, 63.71 and 64.0 Ncm to HA. The difference was statistically significant (P < .05) between the LMS-MS and HA-MS surfaces in all periods of evaluation, and between LMS-HA to 4 and 8 weeks of healing. The surface characterization showed a deep, rough, and regular topography provided by the laser conditioning, that was followed by the HA coating.Conclusions: Based on these results, it was possible to conclude that the implants with laser surface modification associated with HA biomimetic coating can shorten the implant healing period by the increase of bone implant interaction during the first 2 months after implant placement. (C) 2009 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 67:1706-1715, 2009

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Statement of problem. Although titanium presents attractive physical and mechanical properties, there is a need for improving the bond at the titanium/luting cement interface for the longevity of metal ceramic restorations.Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength (SBS) of resin-modified glass ionomer and resin cements to commercially pure titanium (CP Ti).Material and methods. Two hundred and forty CP Ti cast disks (9.0 x 3.0 mm) were divided into 8 surface treatment groups (n=30): 1) 50 mu m Al2O3 particles; 2) 120 mu m Al2O3 particles; 3) 250 mu m Al2O3 particles; 4) 50 mu m Al2O3 particles + silane (RelyX Ceramic Primer); 5) 120 mu m Al2O3 particles + silane; 6) 250 mu m Al2O3 particles + silane; 7) 30 mu m silica-modified Al2O3 particles (Cojet Sand) + silane; and 8) 120 mu m Al2O3 particles, followed by 110 mu m silica-modified Al2O3 particles (Rocatec). The luting cements 1) RelyX Luting 2; 2) RelyX ARC; or 3) RelyX U100 were applied to the treated CP Ti surfaces (n=10). Shear bond strength (SBS) was tested after thermal cycling (5000 cycles, 5 degrees C to 55 degrees C). Data were analyzed by 2-way analysis of variance (ANOVA) and the Tukey HSD post hoc test (alpha=.05). Failure mode was determined with a stereomicroscope (x20).Results. The surface treatments, cements, and their interaction significantly affected the SBS (P<.001). RelyX Luting 2 and RelyX U100 exhibited similar behavior for all surface treatments. For both cements, only the group abraded with 50 mu m Al2O3 particles had lower SBS than the other groups (P<.05). For RelyX ARC, regardless of silane application, abrasion with 50 mu m Al2O3 particles resulted in significantly lower SBS than abrasion with 120 mu m and 250 mu m particles, which exhibited statistically similar SBS values to each other. Rocatec + silane promoted the highest SBS for RelyX ARC. RelyX U100 presented the highest SBS mean values (P<.001). All groups showed a predominance of adhesive failure mode.Conclusions. The adhesive capability of RelyX Luting 2 and RelyX U100 on the SBS was decisive, while for RelyX ARC, mechanical and chemical factors were more influential. (J Prosthet Dent 2012;108:370-376)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate the flexural strength of repairs made with autopolymerising acrylic resin after different treatments of joint surfaces.Material and Methods: Fifty rectangular specimens were made with heat-polymerised acrylic resin and 40 were repaired with autopolymerising acrylic resin following joint surface treatments: group 1 (intact specimens), group 2 (chemical treatment: wetting with methyl-methacrylate for 180 s), group 3 (abraded with silicon carbide paper), group 4 (abraded and wetting with methyl-methacrylate for 180 s) and group 5 (without surface treatment). The flexural strength was measured by a three-point bending test using a universal testing machine with a 100 Kgf load cell in the centre of repair at 5 mm/min cross-head speed. All data were analysed using one-way ANOVA and Tukey HSD test for multiple comparisons (p < 0.05).Results: Among repaired specimens, groups 2 and 4 had 66.53 +/- 3.4 and 69.38 +/- 1.8 MPa mean values and were similar. These groups had superior flexural strength than groups 3 and 5 that were similar and had 54.11 +/- 3.4 and 51.24 +/- 2.8 MPa mean values, respectively. Group 1 had a mean value of 108.30 +/- 2.8 MPa being the highest result.Conclusion: It can be concluded that the treatment of the joint surfaces with methyl-methacrylate increases the flexural strength of denture base repairs, although the strength is still lower than that observed for the intact denture base resin. Abrasion with sandpaper was not able to influence the flexural strength of repaired denture bases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Statement of the Problem: the ceramic composition and surface microstructure of all-ceramic restorations are important components of an effective bonding substrate. Hydrofluoric acid and sandblasting are well-known procedures for surface treatment; however, surface treatment for high alumina-containing and lithium disilicate ceramics have not been fully investigated.Purpose: This in vitro study evaluated the tensile bond strength of resin cement to two types of ceramic systems with different surface treatments.Methods and Materials: Thirty specimens of each ceramic system were made according to the manufacturer's instructions and embedded in polyester resin. Specimens of In-Ceram Alumina [1] and IPS Empress 2 [E] were distributed to three groups with differing surface treatments (n=10): sandblasting with 50 jam aluminum oxide (APA); sandblasting with 110 pm aluminum oxide modified with silica particles (ROCATEC System-RS); a combination of sandblasting with APA and 10% hydrofluoric acid etching (HA) for two minutes on In-Ceram and for 20 seconds for IPS Empress 2. After the respective surface treatments, all the specimens were silanated, and Rely-X resin cement was injected onto the ceramic surface and light polymerized. The specimens were stored in distilled water at 37 degrees C for 24 hours and thermally cycled 1,100 times (5 degrees C/55 degrees C). The tensile bond strength test was performed in a universal testing machine at a 0.5 mm/minute crosshead speed.Results: the mean bond strength values (AWa) for IPS Empress 2 were 12.01 +/- 5.93 (EAPA), 10.34 +/- 1.77 (ERS) and 14.49 +/- 3.04 (EHA). The mean bond strength values for In-Ceram Alumina were 9.87 +/- 2.40 JAPA) and 20.40 +/- 6.27 (IRS). All In-Ceram specimens treated with 10% hydrofluoric acid failed during thermal cycling.Conclusion: the Rocatec system was the most effective surface treatment for In-Ceram Alumina ceramics; whereas, the combination of aluminum oxide sandblasting and hydrofluoric acid etching for 20 seconds worked more effectively for Empress 2 ceramics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives. Alterations in the commercially pure titanium (cpTi) surface may be undertaken to improve its biological properties. The aim of this study is to investigate the biocompatibility of cpTi submitted to different surface treatments.Methods. The cpTi surfaces were prepared so that machined and blasted surfaces, either acid etched or not, were compared using rat bone marrow cells cultured to differentiated into osteoblast. For attachment evaluation, cells were cultured for 4 and 24 h. Cell morphology was evaluated after 3 days. After 7, 14, and 21 days cell proliferation was evaluated. Total protein content and alkaline phosphatase (ALP) activity were evaluated after 14 and 21 days. For bone-like nodule formation, cells were cultured for 21 days. Data were compared by analysis of variance.Results. Cell attachment, cell morphology, cell proliferation, and ALP activity were not affected by surface treatments. Total. protein content was reduced by blasted and acid etched surface. Bone-Like nodule formation was significantly reduced by blasted, acid etched, and a combination of both blasted and acid etched surfaces.Conclusions. Based on these results, it can be suggested that cpTi surfaces that were submitted only to machining treatment favor the final event of osteoblastic differentiation of the rat bone marrow cells, evidenced by increased bone-Like nodule formation. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: This investigation studied the effects of 3 surface treatments on the shear bond strength of a light-activated composite resin bonded to acrylic resin denture teeth. Materials and Methods: The occlusal surfaces of 30 acrylic resin denture teeth were ground flat with up to 400-grit silicon carbide paper. Three different surface treatments were evaluated: (1) the flat ground surfaces were primed with methyl methacrylate (MMA) monomer for 180 seconds; (2) light-cured adhesive resin was applied and light polymerized according to the manufacturer's instructions; and (3) treatment 1 followed by treatment 2. The composite resin was packed on the prepared surfaces using a split mold. The interface between tooth and composite was loaded at a cross-head speed of 0.5 mm/min until failure. Results: Analysis of variance indicated significant differences between the surface treatments. Results of mean comparisons using Tukey's test showed that significantly higher shear bond strengths were developed by bonding composite resin to the surfaces that were previously treated with MMA and then with the bonding agent when compared to the other treatments. Conclusion: Combined surface treatment of MMA monomer followed by application of light-cured adhesive resin provided the highest shear bond strength between composite resin and acrylic resin denture teeth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The commercial pure titanium (cp-Ti) is currently being used with great success in dental implants. In this work we investigate how the cp-Ti implants can be improved by modifying the metal surface morphology, on which a synthetic material with properties similar to that of the inorganic part of the bone, is deposited to facilitate the bone/implant bonding. This synthetic material is the hydroxyapatite, HA, a calcium-phosphate ceramic. The surface modification consists in the application of a titanium oxide (TiO2) layer, using the thermal aspersion - plasma spray technique, with posterior deposition of HA, using the biomimetic method. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques have been used for characterizing phases, microstructures and morphologies of the coatings. The TiO2 deposit shows a mixture of anatase, rutilo and TiO2-x phases, and a porous and laminar morphology, which facilitate the HA deposition. After the thermal treatment, the previously amorphous structured HA coating, shows a porous homogeneous morphology with particle size of about 2-2.5 μm, with crystallinity and composition similar to that of the biological HA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work aims at finding out the threshold to burning in surface grinding process. Acoustic emission and electric power signals are acquired from an analog-digital converter and processed through algorithms in order to generate a control signal to inform the operator or interrupt the process in the case of burning occurrence. The thresholds that dictate the situation of burn and non-burn were studied as well as a comparison between the two parameters was carried out. In the experimental work one type of steel (ABNT-1045 annealed) and one type of grinding wheel referred to as TARGA model 3TG80.3-NV were employed. Copyright © 2005 by ABCM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The optimal combination of the mechanical characteristics of austempered spheroidal graphitic cast steel together with modern casting techniques yielded an economically promising product. The maximum potential of the usage of these steels is related to fabrication and characterization techniques, among which, one of the most important is the cooling diagram (TTT curve). In this work, 3 heats of graphitic steels with the following nominal compositions were cast: 1.0 % C, 2.3 % Si, 0.4 % Mn, and with niobium contents of. 0.0 %, 0.5 % and 1.0 %. TTT curves were determined by dilatometric testing and test specimens of these steels were austempered. The samples were then characterized by hardness testing and optical and SEM microscopy. Tensile, impact (no notch) and wear testing were also performed. The addition of niobium produced significant alterations in the TTT diagrams. Increasing niobium content moves the pearlite transformation nose to the right and the bainitic transformation nose to the left. Tensile strength of these alloys was high, in the range of 1700 MPa and impact values were around of 45 Joules for alloy with 1 % Nb, 49 Joules for alloy with 0.5 % Nb and fracture did not occur for the alloy without the addition of Nb.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol); SM3: air abrasion with 30-μm silicone oxide plus silane; SM4: SM3 plus SM2. A heat-polymerized acrylic resin was applied to the teeth. Thereafter, bar specimens were produced for the microtensile test at dry and thermocyled conditions (60 days water storage followed by 12,000 cycles). The results showed that bond strength was significantly affected by the SM (P < .0001) (SM4 = SM2 > SM3 > SM1) and storage regimens (P < .0001) (dry > thermocycled). The methyl methacrylate-based adhesive showed the highest bond strength.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: Alterations in implant surfaces can affect periimplant bone formation and shorten the healing time. The goal of the present study was a comparative scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS) and biomechanical evaluation of implants subjected to different surface treatments. Materials and Methods: Four implant surfaces were analyzed in the present study: machined commercial implants (TU); porous-surfaced commercial implants blasted with Al2O3 microspheres and acid-etched (TJA); laser beam-irradiated experimental implants (Laser) and laser beam-irradiated experimental implants with hydroxyapatite coating (HA). One sample for each surface underwent pre-surgery SEM/EDS analysis. Thirty-two implants (8 for each surface treatment) were then inserted into the tibia of 4 rabbits. After 8 weeks, the animals were euthanized and the implants retrieved by reverse torque and processed for post-surgery SEM/EDS analysis. Results: HA implants presented higher removal torque values when compared to Laser, TJA and TU groups. Post-surgery SEM micrographs clearly showed bone formation on all the examined surfaces; however, in the TU group bone covered only some areas of the implant surface, while in TJA, Laser and HA groups the entire implant surfaces were overlaid by newly formed bone. EDS analysis supported the results obtained by SEM and removal torque, showing that concentration of Ca and P increased from TU to TJA, Laser and HA implants. Conclusions: Implants with surfaces modified by laser beam with or without apatite coating showed more promising results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate, using a biomechanical test, the force needed to remove implants with surface modification by laser (Nd:YAG) in comparison with implants with machined surfaces. Twenty-four rabbits received one implant with each surface treatment in the tibia, machined surface (MS) and laser-modified surface (LMS). After 4, 8 and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition and roughness. The average removal torque in each period was 23.28, 24.0 and 33.85 Ncm for MS, and 33.0, 39.87 and 54.57 Ncm for LMS, respectively. The difference between the surfaces in all periods of evaluation was statistically significant (p < 0.05). Surface characterization showed that a deep and regular topography was provided by the laser conditioning, with a great quantity of oxygen ions when compared to the MS. The surface micro-topography analysis showed a statistical difference (p < 0.01) between the roughness of the LMS (R a = 1.38 ± 0.23 μm) when compared to that of the MS (R a = 0.33 ± 0.06 μm). Based on these results, it was possible to conclude that the LMS implants' physical-chemical properties increased bone-implant interaction when compared to the MS implants. © 2009 Sociedade Brasileira de Pesquisa Odontológica.