922 resultados para Supervised and Unsupervised Classification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pressures on the Brazilian Amazon forest have been accentuated by agricultural activities practiced by families encouraged to settle in this region in the 1970s by the colonization program of the government. The aims of this study were to analyze the temporal and spatial evolution of land cover and land use (LCLU) in the lower Tapajós region, in the state of Pará. We contrast 11 watersheds that are generally representative of the colonization dynamics in the region. For this purpose, Landsat satellite images from three different years, 1986, 2001, and 2009, were analyzed with Geographic Information Systems. Individual images were subject to an unsupervised classification using the Maximum Likelihood Classification algorithm available on GRASS. The classes retained for the representation of LCLU in this study were: (1) slightly altered old-growth forest, (2) succession forest, (3) crop land and pasture, and (4) bare soil. The analysis and observation of general trends in eleven watersheds shows that LCLU is changing very rapidly. The average deforestation of old-growth forest in all the watersheds was estimated at more than 30% for the period of 1986 to 2009. The local-scale analysis of watersheds reveals the complexity of LCLU, notably in relation to large changes in the temporal and spatial evolution of watersheds. Proximity to the sprawling city of Itaituba is related to the highest rate of deforestation in two watersheds. The opening of roads such as the Transamazonian highway is associated to the second highest rate of deforestation in three watersheds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The classification or index of heart failure severity in patients with acute myocardial infarction (AMI) was proposed by Killip and Kimball aiming at assessing the risk of in-hospital death and the potential benefit of specific management of care provided in Coronary Care Units (CCU) during the decade of 60. Objective: To validate the risk stratification of Killip classification in the long-term mortality and compare the prognostic value in patients with non-ST-segment elevation MI (NSTEMI) relative to patients with ST-segment elevation MI (STEMI), in the era of reperfusion and modern antithrombotic therapies. Methods: We evaluated 1906 patients with documented AMI and admitted to the CCU, from 1995 to 2011, with a mean follow-up of 05 years to assess total mortality. Kaplan-Meier (KM) curves were developed for comparison between survival distributions according to Killip class and NSTEMI versus STEMI. Cox proportional regression models were developed to determine the independent association between Killip class and mortality, with sensitivity analyses based on type of AMI. Results: The proportions of deaths and the KM survival distributions were significantly different across Killip class >1 (p <0.001) and with a similar pattern between patients with NSTEMI and STEMI. Cox models identified the Killip classification as a significant, sustained, consistent predictor and independent of relevant covariables (Wald χ2 16.5 [p = 0.001], NSTEMI) and (Wald χ2 11.9 [p = 0.008], STEMI). Conclusion: The Killip and Kimball classification performs relevant prognostic role in mortality at mean follow-up of 05 years post-AMI, with a similar pattern between NSTEMI and STEMI patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution of socio-economic features in urban space is an important source of information for land and transportation planning. The metropolization phenomenon has changed the distribution of types of professions in space and has given birth to different spatial patterns that the urban planner must know in order to plan a sustainable city. Such distributions can be discovered by statistical and learning algorithms through different methods. In this paper, an unsupervised classification method and a cluster detection method are discussed and applied to analyze the socio-economic structure of Switzerland. The unsupervised classification method, based on Ward's classification and self-organized maps, is used to classify the municipalities of the country and allows to reduce a highly-dimensional input information to interpret the socio-economic landscape. The cluster detection method, the spatial scan statistics, is used in a more specific manner in order to detect hot spots of certain types of service activities. The method is applied to the distribution services in the agglomeration of Lausanne. Results show the emergence of new centralities and can be analyzed in both transportation and social terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesis se centra en la Visión por Computador y, más concretamente, en la segmentación de imágenes, la cual es una de las etapas básicas en el análisis de imágenes y consiste en la división de la imagen en un conjunto de regiones visualmente distintas y uniformes considerando su intensidad, color o textura. Se propone una estrategia basada en el uso complementario de la información de región y de frontera durante el proceso de segmentación, integración que permite paliar algunos de los problemas básicos de la segmentación tradicional. La información de frontera permite inicialmente identificar el número de regiones presentes en la imagen y colocar en el interior de cada una de ellas una semilla, con el objetivo de modelar estadísticamente las características de las regiones y definir de esta forma la información de región. Esta información, conjuntamente con la información de frontera, es utilizada en la definición de una función de energía que expresa las propiedades requeridas a la segmentación deseada: uniformidad en el interior de las regiones y contraste con las regiones vecinas en los límites. Un conjunto de regiones activas inician entonces su crecimiento, compitiendo por los píxeles de la imagen, con el objetivo de optimizar la función de energía o, en otras palabras, encontrar la segmentación que mejor se adecua a los requerimientos exprsados en dicha función. Finalmente, todo esta proceso ha sido considerado en una estructura piramidal, lo que nos permite refinar progresivamente el resultado de la segmentación y mejorar su coste computacional. La estrategia ha sido extendida al problema de segmentación de texturas, lo que implica algunas consideraciones básicas como el modelaje de las regiones a partir de un conjunto de características de textura y la extracción de la información de frontera cuando la textura es presente en la imagen. Finalmente, se ha llevado a cabo la extensión a la segmentación de imágenes teniendo en cuenta las propiedades de color y textura. En este sentido, el uso conjunto de técnicas no-paramétricas de estimación de la función de densidad para la descripción del color, y de características textuales basadas en la matriz de co-ocurrencia, ha sido propuesto para modelar adecuadamente y de forma completa las regiones de la imagen. La propuesta ha sido evaluada de forma objetiva y comparada con distintas técnicas de integración utilizando imágenes sintéticas. Además, se han incluido experimentos con imágenes reales con resultados muy positivos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective to establish a methodology for the oil spill monitoring on the sea surface, located at the Submerged Exploration Area of the Polo Region of Guamaré, in the State of Rio Grande do Norte, using orbital images of Synthetic Aperture Radar (SAR integrated with meteoceanographycs products. This methodology was applied in the following stages: (1) the creation of a base map of the Exploration Area; (2) the processing of NOAA/AVHRR and ERS-2 images for generation of meteoceanographycs products; (3) the processing of RADARSAT-1 images for monitoring of oil spills; (4) the integration of RADARSAT-1 images with NOAA/AVHRR and ERS-2 image products; and (5) the structuring of a data base. The Integration of RADARSAT-1 image of the Potiguar Basin of day 21.05.99 with the base map of the Exploration Area of the Polo Region of Guamaré for the identification of the probable sources of the oil spots, was used successfully in the detention of the probable spot of oil detected next to the exit to the submarine emissary in the Exploration Area of the Polo Region of Guamaré. To support the integration of RADARSAT-1 images with NOAA/AVHRR and ERS-2 image products, a methodology was developed for the classification of oil spills identified by RADARSAT-1 images. For this, the following algorithms of classification not supervised were tested: K-means, Fuzzy k-means and Isodata. These algorithms are part of the PCI Geomatics software, which was used for the filtering of RADARSAT-1 images. For validation of the results, the oil spills submitted to the unsupervised classification were compared to the results of the Semivariogram Textural Classifier (STC). The mentioned classifier was developed especially for oil spill classification purposes and requires PCI software for the whole processing of RADARSAT-1 images. After all, the results of the classifications were analyzed through Visual Analysis; Calculation of Proportionality of Largeness and Analysis Statistics. Amongst the three algorithms of classifications tested, it was noted that there were no significant alterations in relation to the spills classified with the STC, in all of the analyses taken into consideration. Therefore, considering all the procedures, it has been shown that the described methodology can be successfully applied using the unsupervised classifiers tested, resulting in a decrease of time in the identification and classification processing of oil spills, if compared with the utilization of the STC classifier

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land use classification has been paramount in the last years, since we can identify illegal land use and also to monitor deforesting areas. Although one can find several research works in the literature that address this problem, we propose here the land use recognition by means of Optimum-Path Forest Clustering (OPF), which has never been applied to this context up to date. Experiments among Optimum-Path Forest, Mean Shift and K-Means demonstrated the robustness of OPF for automatic land use classification of images obtained by CBERS-2B and Ikonos-2 satellites. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The arid regions are dominated to a much larger degree than humid regions by major catastrophic events. Although most of Egypt lies within the great hot desert belt; it experiences especially in the north some torrential rainfall, which causes flash floods all over Sinai Peninsula. Flash floods in hot deserts are characterized by high velocity and low duration with a sharp discharge peak. Large sediment loads may be carried by floods threatening fields and settlements in the wadis and even people who are living there. The extreme spottiness of rare heavy rainfall, well known to desert people everywhere, precludes any efficient forecasting. Thus, although the limitation of data still reflects pre-satellite methods, chances of developing a warning system for floods in the desert seem remote. The relatively short flood-to-peak interval, a characteristic of desert floods, presents an additional impediment to the efficient use of warning systems. The present thesis contains introduction and five chapters, chapter one points out the physical settings of the study area. There are the geological settings such as outcrop lithology of the study area and the deposits. The alluvial deposits of Wadi Moreikh had been analyzed using OSL dating to know deposits and palaeoclimatic conditions. The chapter points out as well the stratigraphy and the structure geology containing main faults and folds. In addition, it manifests the pesent climate conditions such as temperature, humidity, wind and evaporation. Besides, it presents type of soils and natural vegetation cover of the study area using unsupervised classification for ETM+ images. Chapter two points out the morphometric analysis of the main basins and their drainage network in the study area. It is divided into three parts: The first part manifests the morphometric analysis of the drainage networks which had been extracted from two main sources, topographic maps and DEM images. Basins and drainage networks are considered as major influencing factors on the flash floods; Most of elements were studied which affect the network such as stream order, bifurcation ratio, stream lengths, stream frequency, drainage density, and drainage patterns. The second part of this chapter shows the morphometric analysis of basins such as area, dimensions, shape and surface. Whereas, the third part points the morphometric analysis of alluvial fans which form most of El-Qaá plain. Chapter three manifests the surface runoff through rainfall and losses analysis. The main subject in this chapter is rainfall which has been studied in detail; it is the main reason for runoff. Therefore, all rainfall characteristics are regarded here such as rainfall types, distribution, rainfall intensity, duration, frequency, and the relationship between rainfall and runoff. While the second part of this chapter concerns with water losses estimation by evaporation and infiltration which are together the main losses with direct effect on the high of runoff. Finally, chapter three points out the factors influencing desert runoff and runoff generation mechanism. Chapter four is concerned with assessment of flood hazard, it is important to estimate runoff and tocreate a map of affected areas. Therefore, the chapter consists of four main parts; first part manifests the runoff estimation, the different methods to estimate runoff and its variables such as runoff coefficient lag time, time of concentration, runoff volume, and frequency analysis of flash flood. While the second part points out the extreme event analysis. The third part shows the map of affected areas for every basin and the flash floods degrees. In this point, it has been depending on the DEM to extract the drainage networks and to determine the main streams which are normally more dangerous than others. Finally, part four presets the risk zone map of total study area which is of high inerest for planning activities. Chapter five as the last chapter concerns with flash flood Hazard mitigation. It consists of three main parts. First flood prediction and the method which can be used to predict and forecast the flood. The second part aims to determine the best methods which can be helpful to mitigate flood hazard in the arid zone and especially the study area. Whereas, the third part points out the development perspective for the study area indicating the suitable places in El-Qaá plain for using in economic activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.