969 resultados para Superficial opening
Resumo:
Methoxy-modified beta-diimines HL1 and HL2 reacted with Y(CH2SiMe3)(3)(THF)(2) to afford the corresponding bis(alkyl)s [(LY)-Y-1(CH2SiMe3)(2)] (1) and [(LY)-Y-2(CH2SiMe3)(2)] (2), respectively. Amination of 1 with 2,6-diisopropyl aniline gave the bis(amido) counterpart [(LY)-Y-1{N(H)(2,6-iPr(2)-C6H3)}(2)] (3), selectively. Treatment of Y(CH2SiMe3)(3)(THF)(2) with methoxy-modified anilido imine HL3 yielded bis(alkyl) complex [(LY)-Y-3(CH2SiMe3)(2)(THF)] (4) that sequentially reacted with 2,6-diisopropyl aniline to give the bis(amido) analogue [(LY)-Y-3{N(H)(2,6-iPr(2)-C6H3)}(2)] (5). Complex 2 was "base-free" monomer, in which the tetradentate beta-diiminato ligand was meridional with the two alkyl species locating above and below it, generating tetragonal bipyramidal core about the metal center. Complex 3 was asymmetric monomer containing trigonal bipyramidal core with trans-arrangement of the amido ligands. In contrast, the two cis-located alkyl species in complex 4 were endo and exo towards the 0,N,N tridentate anilido-imido moiety. The bis(amido) complex 5 was confirmed to be structural analogue to 4 albeit without THF coordination. All these yttrium complexes are highly active initiators for the ring-opening polymerization Of L-LA at room temperature.
Resumo:
A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yield of cyclic (arylene phosphonate) oligomers is over 85% by using hexadecyltrimethylammonium bromide as phase transfer catalyst (PTC) at 0 degreesC. The structures of the cyclic oligomers were confirmed by a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and IR analysis. These cyclic oligomers undergo facile ring-opening polymerization in the melt by using potassium 4,4'-biphenoxide as the initiator to give linear polyphosphonate. Free-radical ring-opening polymerization of cyclic(arylene phosphonate) oligomers containing sulfur linkages was also performed in the melt using 2,2'-dithiobis(benzothiazole) (DTB) as the initiator at 270degreesC and the resulting polymer had a M-w of 8 x 10(3) with a molecular weight distribution of 4. Ring-opening copolymerization of these cyclic oligomers with cyclic carbonate oligomers was also achieved. The average molecular weight of the resulting copolymer is higher than the corresponding, homopolymer and the thermal stability of the copolymer is better than the corresponding homopolymer.
Ring-opening polymerization and block copolymerization of L-lactide with divalent samarocene complex
Resumo:
Divalent samarocene complex [(C5H9C5H4)(2)Sm(tetrahydrofuran)(2)] was prepared and characterized and used to catalyze the ring-opening polymerization of L-lactide (L-LA) and copolymerization of L-LA with caprolactone (CL). Several factors affecting monomer conversion and molecular weight of polymer, such as polymerization time, temperature, monomer/catalyst ratio, and solvent, were examined. The results indicated that polymerization was rapid, with monomer conversions reaching 100% within 1 h, and the conformation of L-LA was retained. The structure of the block copolymer of CL/L-LA was characterized by NMR and differential scanning calorimetry. The morphological changes during crystallization of poly(caprolactone) (PCL)-b-P(L-LA) copolymer were monitored with real-time hot-stage atomic force microscopy (AFM). The effect of temperature on the morphological change and crystallization behavior of PCL-b-P(L-LA) copolymer was demonstrated through AFM observation.
Resumo:
Poly (6-caprolactone) (PCL) and poly (L-lactide) (PLA) were prepared by ring-opening Polymerization catalyzed by organic amino calcium catalysts (Ca/PO and Ca/EO) which were prepared by reacting calcium ammoniate Ca(NH3)(6) with propylene oxide and ethylene oxide, respectively. The catalysts exhibited high activity and the ring-opening polymerization behaved a quasi-living characteristic. Based on the Fr-IR spectra and the calcium contents of the catalysts, and based on the H-1 NMR end-group analysis of the low molecular weight PCL prepared using catalysts Ca/PO and Ca/EO, it was proposed that the catalysts have the structure of NH2-Ca-O-CH(CH3)(2) and NH2-CaO-CH2CH3 for Ca/PO and Ca/EO, respectively. The ring-opening polymerization of CL and LA follows a coordination-insertion mechanism and the active site is the Ca-O bond.
Resumo:
An amino isopropoxyl strontium (Sr-PO) initiator, which was prepared by the reaction of propylene oxide with liquid strontium ammoniate solution, was used to carry out the ring-opening polymerization (ROP) of cyclic esters to obtain aliphatic polyesters, such as poly(epsilon-caprolactone) (PCL) and poly(L-lactide) (PLLA). The Sr-PO initiator demonstrated an effective initiating activity for the ROP of epsilon-caprolactone (epsilon-CL) and L-lactide (LLA) under mild conditions and adjusted the molecular weight by the ratio of monomer to Sr-PO initiator. Block copolymer PCL-b-PLLA was prepared by sequential polymerization of epsilon-CL and LLA, which was demonstrated by H-1 NMR, C-13 NMR, and gel permeation chromatography. The chemical structure of Sr-PO initiator was confirmed by elemental analysis of Sr and N, H-1 NMR analysis of the end groups in epsilon-CL oligomer, and Fourier transform infrared (FTIR) spectroscopy. The end groups of PCL were hydroxyl and isopropoxycarbonyl, and FTIR spectroscopy showed the coordination between Sr-PO initiator and model monomer gamma-butyrolactone. These experimental facts indicated that the ROP of cyclic esters followed a coordination-insertion mechanism, and cyclic esters exclusively inserted into the Sr-O bond.
Resumo:
Reaction of YbI2 with two equivalents of cyclopentylindenyl lithium (C5H9C9H6Li) affords ytterbium(II) substituted indenyl complex (C5H9C9H6)(2)Yb(THF)(2) (1) which shows high activity to ring-opening polymerization (ROP) of lactones. The reaction between YbI2 and cyclopentylcyclopentadienyl sodium (C5H9C5H4Na) gives complex [(C5H9C5H4)(2)Yb(THF)](2)O-2 (2) in the presence of a trace amount of O-2, the molecular structure of which comprises two (C5H9C5H4)(2)Yb(THF) bridged by an asymmetric O-2 unit. The O-2 unit and ytterbium atoms define a plane that contains a C-i symmetry center.
Resumo:
Phenolphthalein based polyarylate macrocyclic oligomers were selectively synthesized by an interfacial polycondensation reaction of o-phthaloyl dichloride with phenolphthalein. The high selectivity benefits from the role of phenolphthalein as a color indicator, an efficient phase transfer catalyst, acid a preferred conformation of the starting materials as indicated by analyzing a single-crystal X-ray structure of an analogous macrocycle. The melt ROP of phenolphthalein polyarylate cyclic dimer was studied using nucleophilic initiators, The molecular weight of the resulting polymers builds up very rapidly at the very early stage of polymerization but decreases with time. During the ROP of cyclic dimer, analogous macrocycles with higher degree of polymerization (n greater than or equal to 3) and linear oligomers were produced by backbiting reaction especially at later stage of polymerization. Conversion of cyclic dimer is very fast at the earlier stage of polymerization and then increases slowly with time as analyzed by gel permeation chromatography. However, the total amount of cyclic oligomers in the ROP system increases with time at the later stage of polymerization because of the formation of larger macrocycles. The resulting polymers are amorphous. Glass transition temperatures (T(g)s) of these polymers are influenced by the polymerization time, type of initiator, and initiator concentration.
Resumo:
Two kinds of novel macrocyclic aryl thioether ether oligomers were synthesized by nucleophilic condensation reaction in high yields under pseudo-high-dilution condition. A combination of H-1 NMR, GPC and MALDI-TOF MS analyses unambiguously confirmed the cyclic nature and their distributions, Macrocyclic thioether ether ketone oligomers can undergo facile melt ring opening polymerization(ROP) initiated by thiyl radical to give a high molecular weight polymer.
Resumo:
Novel macrocyclic aryl thioether ester oligomers have been synthesized in high yield from phthaloyl dichloride and 4,4'-thiodiphenol under pseudo high dilution conditions. The cyclic nature was unambiguously confirmed by a combination of MALDI-TOF MS, gel permeation chromatography and NMR analyses. Single-crystal X-ray diffraction of cyclic ester dimer reveals no severe strain on the cyclic structure. The free-radical ring opening polymerization (ROP) of the macrocyclic oligomers was achieved to give high molecular weight polymers via a transthioetherification reaction. The molecular weight of the polymer resulting from ROP decreases as the conversion of cyclic oligomers increases after a polymerization period of 30 min.
Resumo:
Ring-opening polymerization of epsilon-caprolactone (CL) catalyzed by lanthanocenes, O(C2H4C5H3CH3)(2)YCl (Cat-YCl) and Me2Si[(CH3)(3)SiC5R3](2)NdCl (Cat-NdCl) has been carried out for the first time. It has been found that both yttrocene and neodymocene are very efficient to catalyze the polymerization of CL, giving high molecular weight poly(epsilon-caprolactone) (PCL). The effects of [cat]/[epsilon-CL] molar ratio, polymerization temperature and time, as well as solvents were investigated and polymerization temperature is found to be the most important factor affecting the polymerization. The bulk polymerization gives higher molecular weight PCL and higher conversion than that in solution polymerization. NaBPh4 was found to promote the polymerization of epsilon-caprolactone, and thus to increase both the polymerization conversion and MW of poly(epsilon-caprolactone).
Resumo:
A series of new macrocyclic arylates have been efficiently synthesized and unambiguously characterized by a combination of GPC, MS(FAB) and H-1 NMR. These macrocycles undergo facile ring-opening polymerization in the presence of anionic initiators to give high molecular weight polyarylates.
Resumo:
A series of macrocyclic arylate dimers have been selectively synthesized by an interfacial polycondensation of o-phthaloyldichloride with bisphenols. A combination of GPC, FAB-MS, H-1 and C-13 NMR unambiguously confirmed the cyclic nature. Although single-crystal X-ray analysis of two such macrocycles reveals no severe strain on the cyclic structures, these macrocycles can undergo facile melt polymerization to give high molecular weight polyarylates.
Resumo:
Macrocyclic arylene ether ketone dimer was isolated from a mixture of cyclic oligomers obtained by the nucleophilic substitution reaction of bisphenol A and 4,4'-difluorobenzophenone and easily polymerized to high molecular weight linear poly(ether ketone). The cyclic compound was characterized by FTIR, H-1- and C-13-NMR, and single-crystal x-ray diffraction. Analysis of the spectral and crystal structure reveals extreme distortions of he phenyl rings attached to the isopropylidene center and of the turning points of the molecular polygons. The release of the ring strain on ring-opening combined with entropical difference between the linear polymer chain and the more rigid macrocycle at temperatures of polymerization may be the proposed motivating factors in the polymerization of this precursor to high molecular weight poly(ether ketone). (C) 1997 John Wiley & Sons, Inc.
Resumo:
A series of macrocyclic arylate dimers have been efficiently synthesized by an interfacial polycondensation of o-phthaloyl dichloride with bisphenols. A combination of GPC, FAB MS, and H-1 and C-13 NMR unambiguously confirmed the cyclic nature. Although single-crystal X-ray analysis of one such macrocycle reveals no severe strain on the cyclic structure, these macrocycles can undergo facile melt polymerization to give high molecular weight polyarylates.
Resumo:
Several isomeric aromatic diester-diacids may appear as a result of the opening selectivity of anhydride groups towards the alcohol. H-1 n.m.r. was thus used to characterize the isomeric structure and to quantify the isomer composition. It was found that the isomer ratios quantitatively correlate with electron affinity of bridged dianhydrides and is independent of the alcohol structure used. Furthermore, the H-1 n.m.r chemical shift of bridged diester-diacids was found to be a very sensitive probe of chemical nature of bridged groups and can be used as indices of the opening selectivity. (C) 1997 Elsevier Science Ltd.