892 resultados para Sun: UV Radiation
Resumo:
The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties
Resumo:
The thermoluminescence (TL) response of Dy and Li doped 20CaB(4)O(7)-80CaB(2)O(4) (Wt%) glass-ceramic irradiated with ultraviolet (UV) radiation was studied. In order to act as TL activator ions, the Dy and Li ions were included in the matrix during the melting process to increase its TL efficiency. A single crystalline CaB2O4 phase was present in the glass-ceramic as determined by X-ray diffraction (XRD). The glass-ceramic 20CaB(4)O(7)-80CaB(2)O(4):Dy,Li wt% (named 20CBO7:Dy,Li) is a newly prepared TL material. Its thermoluminescent dosimetric characteristics have shown a linear response under UV radiation exposure and a good TL signal reproducibility, thus proving to be a promising material for using as an ultraviolet radiation dosimeter. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Exposure to ultraviolet (UV) radiation induces generation of reactive oxygen species, production of proinflammatory cytokines and melanocyte-stimulating hormone (MSH) as well as increase in tyrosinase activity. The potential photoprotective effects of Coccoloba uvifera extract (CUE) were evaluated in UV-stimulated melanocytes.Human epidermal melanocytes were used as an in vitro model to evaluate the effects of CUE on the production interleukin-1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF-alpha), and alpha-MSH under basal and UV-stimulated conditions. Antioxidant and anti-tyrosinase activities were also evaluated in membrane lipid peroxidation and mushroom tyrosinase assay, respectively.Coccoloba uvifera L. showed antioxidant and anti-tyrosinase activities and also inhibited the production of IL-1 alpha, TNF-alpha and alpha-MSH in melanocytes subjected to UV radiation (P < 0.01). Moreover, CUE inhibited the activity of tyrosine kinase in cell culture under basal and UV radiation conditions (P < 0.001), corroborating the findings of the mushroom tyrosinase assay.This study supports the photoprotective potential of CUE.
Resumo:
Skin cancers are the most common human malignant neoplasia and their incidence is growing, chiefly in tropical countries. There is evidence that ultraviolet (UV) radiation present in sunlight is important for genetic damage. Mutations due to such damage could be responsible for alterations in oncogenes and tumor suppressor genes. Recent studies have reported remarkable differences in mutation frequency of the RAS proto-oncogene in non-melanoma skin cancers. These findings may reflect differences in the molecular epidemiology of cutaneous tumors found in geographical areas with diverse sun exposure and ethnical origins of their populations. Our study proposed to perform molecular analyses of skin tumors on patients living in southeastern Brazil, in areas with high levels of sun exposure. DNA from eight solar keratose (SK), 26 basal cell carcinomas (BCC) and 19 squamous cell carcinomas (SCC) was submitted to PCR-SSCP analysis for codons 12, 13 and 61. Contradicting other authors, we found no mutations in codons 12,13 but detected two BCCs and one SCC with a mutation in codon 61. These findings suggest that the activation of KRAS oncogene may contribute to the pathogenicity of cutaneous lesions in southeastern Brazil.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work intends to investigate the biodegradation of the polymers and blend films of polypropylene (PP) and poly(hidroxybutirate-valerate) (PHBV), after UV radiation to facilitate the PP degradation, which is a polymer with long chains difficult to degrade by biological agents present in the environment. This polymer is outstanding by its mechanical properties and versatility of industrial and commercial use and the PHBV by its quick biodegradability in the environment. Blends of these materials could to present a commitment between mechanical properties and biodegradability to execute its function and after the discard to have lesser lifetime in the garbage landfills. Another aspect of this work is the controlling effect of PP on PHBV, influencing its degradation time
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Ultraviolet (UV) filters are widely used in the formulation of personal care products (PCPs) to prevent damage to the skin, lips, and hair caused by excessive UV radiation. Therefore, large amounts of these substances are released daily into the aquatic environment through either recreational activities or the release of domestic sewage. The concern regarding the presence of such substances in the environment and the exposure of aquatic organisms is based on their potential for bioaccumulation and their potential as endocrine disruptors. Although there are several reports regarding the occurrence and fate of UV filters in the aquatic environment, these compounds are still overlooked in tropical areas. In this study, we investigated the occurrence of the organic UV filters benzophenone-3 (BP-3), ethylhexyl salicylate (ES), ethylhexyl methoxycinnamate (EHMC), and octocrylene (OC) in six water treatment plants in various cities in Southeast Brazil over a period of 6 months to 1 year. All of the UV filters studied were detected at some time during the sampling period; however, only EHMC and BP-3 were found in quantifiable concentrations, ranging from 55 to 101 and 18 to 115 ng L(-1), respectively. Seasonal variation of BP-3 was most clearly noticed in the water treatment plant in Araraquara, São Paulo, where sampling was performed for 12 months. BP-3 was not quantifiable in winter but was quantifiable in summer. The levels of BP-3 were in the same range in raw, treated and chlorinated water, indicating that the compound was not removed by the water treatment process.
Resumo:
Organic sunscreens may decrease their protective capability and also behave as photo-oxidants upon ultraviolet radiation (UVR) exposure. The present study investigated the effect of a cream gel formulation containing the UV filters benzophenone-3, octyl methoxycinnamate, and octyl salicylate on skin superoxide dismutase (SOD) after a single dose of UVR (2.87 J/cm(2)). The retention of these UV filters was first evaluated in vivo using hairless mice to guarantee the presence of the filters in the skin layers at the moment of irradiation. The in vivo effect of the UV filters on skin SOD was then assayed spectrophotometrically via the reduction of cytochrome c. The cream gel formulation promoted the penetration of the three UV filters into the epidermis and the dermis at one hour post-application. A significant decrease in SOD activity was observed in irradiated animals treated with sunscreen formulation. However, no effect on SOD activity in skin was observed by the isolated presence of the sunscreens, the formulation components, or the exposure to UVR. The sunscreens may have formed degradation products under UVR that may have either inhibited the enzyme or generated reactive species in the skin. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Due to the increase of solar ultraviolet radiation (UV) incidence over the last few decades, the use of sunscreen has been widely adopted for skin protection. However, considering the high efficiency of sunlight-induced DNA lesions, it is critical to improve upon the current approaches that are used to evaluate protection factors. An alternative approach to evaluate the photoprotection provided by sunscreens against daily UV radiation-induced DNA damage is provided by the systematic use of a DNA dosimeter. Methodology/Principal Findings: The Sun Protection Factor for DNA (DNA-SPF) is calculated by using specific DNA repair enzymes, and it is defined as the capacity for inhibiting the generation of cyclobutane pyrimidine dimers (CPD) and oxidised DNA bases compared with unprotected control samples. Five different commercial brands of sunscreen were initially evaluated, and further studies extended the analysis to include 17 other products representing various formulations and Sun Protection Factors (SPF). Overall, all of the commercial brands of SPF 30 sunscreens provided sufficient protection against simulated sunlight genotoxicity. In addition, this DNA biosensor was useful for rapidly screening the biological protection properties of the various sunscreen formulations. Conclusions/Significance: The application of the DNA dosimeter is demonstrated as an alternative, complementary, and reliable method for the quantification of sunscreen photoprotection at the level of DNA damage.
Resumo:
OBJECTIVE: Because studies suggest that ultraviolet (UV) radiation modulates the myositis phenotype and Mi-2 autoantigen expression, we conducted a retrospective investigation to determine whether UV radiation may influence the relative prevalence of dermatomyositis and anti-Mi-2 autoantibodies in the US. METHODS: We assessed the relationship between surface UV radiation intensity in the state of residence at the time of onset with the relative prevalence of dermatomyositis and myositis autoantibodies in 380 patients with myositis from referral centers in the US. Myositis autoantibodies were detected by validated immunoprecipitation assays. Surface UV radiation intensity was estimated from UV Index data collected by the US National Weather Service. RESULTS: UV radiation intensity was associated with the relative proportion of patients with dermatomyositis (odds ratio [OR] 2.3, 95% confidence interval [95% CI] 0.9-5.8) and with the proportion of patients expressing anti-Mi-2 autoantibodies (OR 6.0, 95% CI 1.1-34.1). Modeling of these data showed that these associations were confined to women (OR 3.8, 95% CI 1.3-11.0 and OR 17.3, 95% CI 1.8-162.4, respectively) and suggests that sex influences the effects of UV radiation on autoimmune disorders. Significant associations were not observed in men, nor were UV radiation levels related to the presence of antisynthetase or anti-signal recognition particle autoantibodies. CONCLUSION: This first study of the distribution of myositis phenotypes and UV radiation exposure in the US showed that UV radiation may modulate the clinical and immunologic expression of autoimmune disease in women. Further investigation of the mechanisms by which these effects are produced may provide insights into pathogenesis and suggest therapeutic or preventative strategies.
Resumo:
Ultraviolet (UV) radiation produces immunological alterations in both humans and animals that include a decrease in the delayed type hypersensitivity (DTH) response to complex antigens, and to the induction of the suppressor T cell pathway. Cell-mediated immunity of the type that is altered by UV radiation has been shown to be important in host resistance against microorganisms. My dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans.^ The (DTH) response of C3H mice exposed to ultraviolet (UV) radiation before (afferent arm of DTH) or after (efferent arm of DTH) infection with Candida albicans was markedly and systemically suppressed. Although suppression of both the afferent and efferent phases of DTH were caused by similar wavebands within the ultraviolet region, the dose of UV radiation that suppressed the efferent arm of DTH was 10-fold higher than the dose that suppressed the afferent arm of the DTH reaction.^ The DTH response of C57BL/6 mice was also suppressed by UV radiation; however the suppression was accomplished by exposure to significantly lower doses UV radiation compared to C3H mice. In C57BL/6 mice, the dose of UV radiation that suppressed the afferent phase of DTH was 5-fold higher than the dose that suppressed the efferent phase.^ Exposure of C3H mice to UV radiation before sensitization induced splenic suppressor T cells that upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, the suppression caused by UV irradiation of mice after sensitization was not transferable. Spleen cells from sensitized mice exhibited altered homing patterns in animals that were exposed to UV radiation shortly before receiving cells, suggesting that UV-induced suppression of the efferent arm of DTH could result from an alteration in the distribution of effector cells.^ UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the DTH response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice.^ These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections. ^
Resumo:
The recognition of the skin as an immunocompetent organ has focused attention on the complex interaction between ultraviolet radiation and the immune system. How UV-radiation, which hardly penetrates past the epidermis, induces systemic immune suppression is not entirely clear. We propose that suppressive cytokines, released by UV-irradiated keratinocytes, play a role in the induction of immune suppression. Injecting supernatants from UV-exposed murine keratinocytes into mice impairs their ability to mount a delayed-type hypersensitivity response against allogeneic histocompatibility antigens. We tested the hypothesis that the down regulation of the immune response by UV is precipitated by the release of IL-10 after keratinocytes are UV-irradiated. After UV exposure IL-10 mRNA was upregulated. Western analysis indicated immunoreactive IL-10 was secreted by UV-exposed keratinocytes. The addition of supernatants from UV-irradiated keratinocytes to Th1 clones diminished their IFN production, whereas the addition of supernatants from normal keratinocytes had no suppressive effect on IFN production. Furthermore, treating supernatants from UV-irradiated keratinocytes with anti-IL-10 antibodies blocked the induction of immune suppression. To determine if IL-10 was responsible for the immunosuppression seen after total-body UV irradiation, UV-exposed mice were treated with anti-IL-10 antibodies. Treating UV-irradiated mice with anti-IL-10 reversed the induction of immune suppression. These findings suggest that keratinocyte-derived IL-10 was mediating UV-induced suppression in vivo. We also tested the hypothesis that UV-induced suppressor cells are Th2 cells. Mice were injected with spleen cells from either normal or UV-exposed donor mice immunized with alloantigen. At the time of spleen cell infusion, the recipient mice were then resensitized. Spleen cells from UV-exposed mice suppressed DTH. Mice treated identically and injected with anti-IL-10 antibodies were able to generate a DTH response. Taken together these data suggest that the suppressor cells that are induced by UV radiation are Th2 cells which mediate their suppressive effect by release of IL-10. ^
Resumo:
Ultraviolet B (UVB) radiation, in addition to being carcinogenic, is also immunosuppressive. Immunologically, UVB induces suppression locally, at the site of irradiation, or systemically, by inducing the production of a variety of immunosuppressive cytokines. Systemic effects include suppression of delayed-type hypersensitivity (DTH) responses to a variety of antigens (e.g. haptens, proteins, bacterial antigens, or alloantigens). One of the principal mediators of UV-induced immune suppression is the T helper-2 (Th2) cytokine interleukin-10 (IL-10); this suggests that UV irradiation induces suppression by shifting the immune response from a Th1 (cellular) to a Th2 (humoral) response. These "opposing" T helper responses are usually mutually exclusive, and polarized Th1 or Th2 responses may lead to either protection from infection or increased susceptibility to disease, depending on the infectious agent and the route of infection.^ This study examines the effects of UVB irradiation on cellular and humoral responses to Borrelia burgdorferi (Bb), the causative agent of Lyme disease (LD) in both immunization and infectious disease models; in addition, it examines the role of T cells in protection from and pathology of Bb infection. Particular emphasis is placed on the Bb-specific antibody responses following irradiation since UVB effects on humoral immunity are not fully understood. Mice were irradiated with a single dose of UV and then immunized (in complete Freund's adjuvant) or infected with Bb (intradermally at the base of the tail) in order to examine both DTH and antibody responses in both systems. UVB suppressed the Th1-associated antibodies IgG2a and IgG2b in both systems, as well as the DTH response to Bb in a dose dependent manner. Injection of anti-IL-10 antibody into UV-irradiated mice within 24 h after UV exposure restored the DTH response, as well as the Th1 antibody (IgG2a and IgG2b) response. In addition, injecting recombinant IL-10 mimicked some of the effects of UV radiation.^ Bb-specific Th1 T cell lines (BAT2.1-2.3) were generated to examine the role of T cells in Lyme borreliosis. All lines were CD4$\sp+,$ $\alpha\beta\sp+$ and proliferated specifically in response to Bb. The BAT2 cell lines not only conferred a DTH response to naive C3H recipients, but reduced the number of organisms recovered from the blood and tissues of mice infected with Bb. Furthermore, BAT2 cell lines protected mice from Bb-induced periarthritis. ^