949 resultados para Structural Magnetic Resonance Imaging
Resumo:
Background: Cardiac magnetic resonance imaging provides detailed anatomical information on infarction. However, few studies have investigated the association of these data with mortality after acute myocardial infarction. Objective: To study the association between data regarding infarct size and anatomy, as obtained from cardiac magnetic resonance imaging after acute myocardial infarction, and long-term mortality. Methods: A total of 1959 reports of “infarct size” were identified in 7119 cardiac magnetic resonance imaging studies, of which 420 had clinical and laboratory confirmation of previous myocardial infarction. The variables studied were the classic risk factors – left ventricular ejection fraction, categorized ventricular function, and location of acute myocardial infarction. Infarct size and acute myocardial infarction extent and transmurality were analyzed alone and together, using the variable named “MET-AMI”. The statistical analysis was carried out using the elastic net regularization, with the Cox model and survival trees. Results: The mean age was 62.3 ± 12 years, and 77.3% were males. During the mean follow-up of 6.4 ± 2.9 years, there were 76 deaths (18.1%). Serum creatinine, diabetes mellitus and previous myocardial infarction were independently associated with mortality. Age was the main explanatory factor. The cardiac magnetic resonance imaging variables independently associated with mortality were transmurality of acute myocardial infarction (p = 0.047), ventricular dysfunction (p = 0.0005) and infarcted size (p = 0.0005); the latter was the main explanatory variable for ischemic heart disease death. The MET-AMI variable was the most strongly associated with risk of ischemic heart disease death (HR: 16.04; 95%CI: 2.64-97.5; p = 0.003). Conclusion: The anatomical data of infarction, obtained from cardiac magnetic resonance imaging after acute myocardial infarction, were independently associated with long-term mortality, especially for ischemic heart disease death.
Resumo:
Independent Component Analysis, Time Series Analysis, Functional Magnetic Resonance Imaging
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015
Resumo:
OBJECTIVE-We studied whether manganese-enhanced high-field magnetic resonance (MR) imaging (MEHFMRI) could quantitatively detect individual islets in situ and in vivo and evaluate changes in a model of experimental diabetes.RESEARCH DESIGN AND METHODS-Whole pancreata from untreated (n = 3), MnCl(2) and glucose-injected mice (n = 6), and mice injected with either streptozotocin (STZ; n = 4) or citrate buffer (n = 4) were imaged ex vivo for unambiguous evaluation of islets. Exteriorized pancreata of MnCl(2) and glucose-injected mice (n = 6) were imaged in vivo to directly visualize the gland and minimize movements. In all cases, MR images were acquired in a 14.1 Testa scanner and correlated with the corresponding (immuno)histological sections.RESULTS-In ex vivo experiments, MEHFMRI distinguished different pancreatic tissues and evaluated the relative abundance of islets in the pancreata of normoglycemic mice. MEHFMRI also detected a significant decrease in the numerical and volume density of islets in STZ-injected mice. However, in the latter measurements the loss of beta-cells was undervalued under the conditions tested. The experiments on the externalized pancreata confirmed that MEHFMRI could visualize native individual islets in living, anesthetized mice.CONCLUSIONS-Data show that MEHFMRI quantitatively visualizes individual islets in the intact mouse pancreas, both ex vivo and in vivo. Diabetes 60:2853-2860, 2011
Resumo:
Image quality in magnetic resonance imaging (MRI) is considerably affected by motion. Therefore, motion is one of the most common sources of artifacts in contemporary cardiovascular MRI. Such artifacts in turn may easily lead to misinterpretations in the images and a subsequent loss in diagnostic quality. Hence, there is considerable research interest in strategies that help to overcome these limitations at minimal cost in time, spatial resolution, temporal resolution, and signal-to-noise ratio. This review summarizes and discusses the three principal sources of motion: the beating heart, the breathing lungs, and bulk patient movement. This is followed by a comprehensive overview of commonly used compensation strategies for these different types of motion. Finally, a summary and an outlook are provided.
Resumo:
Background: CMR has recently emerged as a robust and reliable technique to assess coronary artery disease (CAD). A negative perfusion CMR test predicts low event rates of 0.3-0.5%/year. Invasive coronary angiography (CA) remains the "gold standard" for the evaluation of CAD in many countries.Objective: Assessing the costs of the two strategies in the European CMR registry for the work-up of known or suspected CAD from a health care payer perspective. Strategy 1) a CA to all patients or 2) a CA only to patients who are diagnosed positive for ischemia in a prior CMR.Method and results: Using data of the European CMR registry (20 hospitals, 11'040 consecutive patients) we calculated the proportion of patients who were diagnosed positive (20.6%), uncertain (6.5%), and negative (72.9%) after the CMR test in patients with known or suspected CAD (n=2'717). No other medical test was performed to patients who were negative for ischemia. Positive diagnosed patients had a coronary angiography. Those with uncertain diagnosis had additional tests (84.7%: stress echocardiography, 13.1%: CCT, 2.3% SPECT), these costs were added to the CMR strategy costs. Information from costs for tests in Germany and Switzerland were used. A sensibility analysis was performed for inpatient CA. For costs see figure. Results - costs.Discussion: The CMR strategy costs less than the CA strategy for the health insurance systems both, in Germany and Switzerland. While lower in costs, the CMR strategy is a non-invasive one, does not expose to radiation, and yields additional information on cardiac function, viability, valves, and great vessels. Developing the use of CMR instead of CA might imply some reduction in costs together with superior patient safety and comfort, and a better utilization of resources at the hospital level. Document introduit le : 01.12.2011
Resumo:
OBJECTIVES: This study was designed to identify macrophage-rich atherosclerotic plaque noninvasively by imaging the tissue uptake of long-circulating superparamagnetic nanoparticles with a positive contrast off-resonance imaging sequence (inversion recovery with ON-resonant water suppression [IRON]). BACKGROUND: The sudden rupture of macrophage-rich atherosclerotic plaques can trigger the formation of an occlusive thrombus in coronary vessels, resulting in acute myocardial infarction. Therefore, a noninvasive technique that can identify macrophage-rich plaques and thereby assist with risk stratification of patients with atherosclerosis would be of great potential clinical utility. METHODS: Experiments were conducted on a clinical 3-T magnetic resonance imaging (MRI) scanner in 7 heritable hyperlipidemic and 4 control rabbits. Monocrystalline iron-oxide nanoparticles (MION)-47 were administrated intravenously (2 doses of 250 mumol Fe/kg), and animals underwent serial IRON-MRI before injection of the nanoparticles and serially after 1, 3, and 6 days. RESULTS: After administration of MION-47, a striking signal enhancement was found in areas of plaque only in hyperlipidemic rabbits. The magnitude of enhancement on magnetic resonance images had a high correlation with the number of macrophages determined by histology (p < 0.001) and allowed for the detection of macrophage-rich plaque with high accuracy (area under the curve: 0.92, SE: 0.04, 95% confidence interval: 0.84 to 0.96, p < 0.001). No significant signal enhancement was measured in remote areas without plaque by histology and in control rabbits without atherosclerosis. CONCLUSIONS: Using IRON-MRI in conjunction with superparamagnetic nanoparticles is a promising approach for the noninvasive evaluation of macrophage-rich, vulnerable plaques.
Resumo:
ABSTRACT: q-Space-based techniques such as diffusion spectrum imaging, q-ball imaging, and their variations have been used extensively in research for their desired capability to delineate complex neuronal architectures such as multiple fiber crossings in each of the image voxels. The purpose of this article was to provide an introduction to the q-space formalism and the principles of basic q-space techniques together with the discussion on the advantages as well as challenges in translating these techniques into the clinical environment. A review of the currently used q-space-based protocols in clinical research is also provided.
Resumo:
Electromagnetic fields arising from magnetic resonance imaging (MRI) can cause various clinically relevant functional disturbances in patients with cardiac pacemakers. Consequently, an implanted pacemaker is generally considered a contraindication for an MRI scan. With approximately 60 million MRI scans performed worldwide per year, MRI may be indicated for an estimated majority of pacemaker patients during the lifetime of their pacemakers. The availability of MR conditional pacemakers with CE labelling is of particular advantage since they allow the safe use of pacemakers in MRI. In this article the current state of knowledge on pacemakers and MR imaging is discussed. We present the results of a survey conducted among Swiss radiologists to assess current practice in patients with pacemakers.
Resumo:
Rupture of a congenital aneurysm of the sinus of Valsalva is a rare congenital cardiac malformation. This case report describes a congenital aneurysm of the sinus of Valsalva which ruptured into the right ventricle in a 3-year-old girl. The exact route of the fistula through the cardiac walls and the localization of the rupture into the right ventricle was not completely defined by two-dimensional and color Doppler echocardiography and could be determined only by magnetic resonance imaging (MRI).
Resumo:
Abdominal ultrasound (US) has been widely used in the evaluation of patients with schistosomiasis mansoni. It represents an important indirect method of diagnosis and classification of the disease, and it has also been used as a tool in the evaluation of therapeutic response and regression of fibrosis. We describe the case of a man in whom US showed solid evidence of schistosomal periportal fibrosis and magnetic resonance imaging revealed that periportal signal alteration corresponded to adipose tissue which entered the liver togheter with the portal vein.
Resumo:
BACKGROUND: Many patients with an implantable cardioverter-defibrillator (ICD) have indications for magnetic resonance imaging (MRI). However, MRI is generally contraindicated in ICD patients because of potential risks from hazardous interactions between the MRI and ICD system. OBJECTIVE: The purpose of this study was to use preclinical computer modeling, animal studies, and bench and scanner testing to demonstrate the safety of an ICD system developed for 1.5-T whole-body MRI. METHODS: MRI hazards were assessed and mitigated using multiple approaches: design decisions to increase safety and reliability, modeling and simulation to quantify clinical MRI exposure levels, animal studies to quantify the physiologic effects of MRI exposure, and bench testing to evaluate safety margin. RESULTS: Modeling estimated the incidence of a chronic change in pacing capture threshold >0.5V and 1.0V to be less than 1 in 160,000 and less than 1 in 1,000,000 cases, respectively. Modeling also estimated the incidence of unintended cardiac stimulation to occur in less than 1 in 1,000,000 cases. Animal studies demonstrated no delay in ventricular fibrillation detection and no reduction in ventricular fibrillation amplitude at clinical MRI exposure levels, even with multiple exposures. Bench and scanner testing demonstrated performance and safety against all other MRI-induced hazards. CONCLUSION: A preclinical strategy that includes comprehensive computer modeling, animal studies, and bench and scanner testing predicts that an ICD system developed for the magnetic resonance environment is safe and poses very low risks when exposed to 1.5-T normal operating mode whole-body MRI.