855 resultados para Structural Health Monitoring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of energy harvesting materials for large infrastructure is a promising and growing field. In this regard, the use of such harvesters for the purpose of structural health monitoring of bridges has been proposed in recent times as one of the feasible options since the deployment of them can remove the necessity of an external power source. This paper addresses the performance issue of such monitors over the life-cycle of a bridge as it deteriorates and the live load on the structure increases. In this regard, a Lead Zirconate Titanate (PZT) material is considered as the energy harvesting material and a comparison is carried out over the operational life of a reinforced concrete bridge. The evolution of annual average daily traffic (AADT) is taken into consideration, as is the degradation of the structure over time, due to the effects of corrosion. Evolution of such harvested energy is estimated over the life-cycle of the bridge and the sensitivity of harvested energy is investigated for varying rates of degradation and changes in AADT. The study allows for designing and understanding the potential of energy harvesters as a health monitor for bridges. This paper also illustrates how the natural growth of traffic on a bridge over time can accentuate the identification of damage, which is desirable for an ageing structure. The paper also assesses the impact and effects of deployment of harvesters in a bridge as a part of its design process, considering performance over the entire life-cycle versus a deployment at a certain age of the structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Situational Awareness provides a user centric approach to security and privacy. The human factor is often recognised as the weakest link in security, therefore situational perception and risk awareness play a leading role in the adoption and implementation of security mechanisms. In this study we assess the understanding of security and privacy of users in possession of wearable devices. The findings demonstrate privacy complacency, as the majority of users trust the application and the wearable device manufacturer. Moreover the survey findings demonstrate a lack of understanding of security and privacy by the sample population. Finally the theoretical implications of the findings are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors is essential in performing localization. This makes the time of arrival (ToA) an important piece of information to retrieve from the AE signal. Generally, this is determined using statistical methods such as the Akaike Information Criterion (AIC) which is particularly prone to errors in the presence of noise. And given that the structures of interest are surrounded with harsh environments, a way to accurately estimate the arrival time in such noisy scenarios is of particular interest. In this work, two new methods are presented to estimate the arrival times of AE signals which are based on Machine Learning. Inspired by great results in the field, two models are presented which are Deep Learning models - a subset of machine learning. They are based on Convolutional Neural Network (CNN) and Capsule Neural Network (CapsNet). The primary advantage of such models is that they do not require the user to pre-define selected features but only require raw data to be given and the models establish non-linear relationships between the inputs and outputs. The performance of the models is evaluated using AE signals generated by a custom ray-tracing algorithm by propagating them on an aluminium plate and compared to AIC. It was found that the relative error in estimation on the test set was < 5% for the models compared to around 45% of AIC. The testing process was further continued by preparing an experimental setup and acquiring real AE signals to test on. Similar performances were observed where the two models not only outperform AIC by more than a magnitude in their average errors but also they were shown to be a lot more robust as compared to AIC which fails in the presence of noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissertation starts by providing a description of the phenomena related to the increasing importance recently acquired by satellite applications. The spread of such technology comes with implications, such as an increase in maintenance cost, from which derives the interest in developing advanced techniques that favor an augmented autonomy of spacecrafts in health monitoring. Machine learning techniques are widely employed to lay a foundation for effective systems specialized in fault detection by examining telemetry data. Telemetry consists of a considerable amount of information; therefore, the adopted algorithms must be able to handle multivariate data while facing the limitations imposed by on-board hardware features. In the framework of outlier detection, the dissertation addresses the topic of unsupervised machine learning methods. In the unsupervised scenario, lack of prior knowledge of the data behavior is assumed. In the specific, two models are brought to attention, namely Local Outlier Factor and One-Class Support Vector Machines. Their performances are compared in terms of both the achieved prediction accuracy and the equivalent computational cost. Both models are trained and tested upon the same sets of time series data in a variety of settings, finalized at gaining insights on the effect of the increase in dimensionality. The obtained results allow to claim that both models, combined with a proper tuning of their characteristic parameters, successfully comply with the role of outlier detectors in multivariate time series data. Nevertheless, under this specific context, Local Outlier Factor results to be outperforming One-Class SVM, in that it proves to be more stable over a wider range of input parameter values. This property is especially valuable in unsupervised learning since it suggests that the model is keen to adapting to unforeseen patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piezoactuators consist of compliant mechanisms actuated by two or more piezoceramic devices. During the assembling process, such flexible structures are usually bonded to the piezoceramics. The thin bonding layer(s) between the compliant mechanism and the piezoceramic may induce undesirable behavior, including unusual interfacial nonlinearities. This constitutes a drawback of piezoelectric actuators and, in some applications, such as those associated to vibration control and structural health monitoring (e. g., aircraft industry), their use may become either unfeasible or at least limited. A possible solution to this standing problem can be achieved through the functionally graded material concept and consists of developing `integral piezoactuators`, that is those with no bonding layer(s) and whose performance can be improved by tailoring their structural topology and material gradation. Thus, a topology optimization formulation is developed, which allows simultaneous distribution of void and functionally graded piezoelectric materials (including both piezo and non-piezoelectric materials) in the design domain in order to achieve certain specified actuation movements. Two concurrent design problems are considered, that is the optimum design of the piezoceramic property gradation, and the design of the functionally graded structural topology. Two-dimensional piezoactuator designs are investigated because the applications of interest consist of planar devices. Moreover, material gradation is considered in only one direction in order to account for manufacturability issues. To broaden the range of such devices in the field of smart structures, the design of integral Moonie-type functionally graded piezoactuators is provided according to specified performance requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Mecânica na Área de Manutenção e Produção

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a damage-detection approach using the Mahalanobis distance with structural forced dynamic response data, in the form of transmissibility, is proposed. Transmissibility, as a damage-sensitive feature, varies in accordance with the damage level. Besides, Mahalanobis distance can distinguish the damaged structural state condition from the undamaged one by condensing the baseline data. For comparison reasons, the Mahalanobis distance results using transmissibility are compared with those using frequency response functions. The experiment results reveal quite a significant capacity for damage detection, and the comparison between the use of transmissibility and frequency response functions shows that, in both cases, the different damage scenarios could be well detected. Copyright (c) 2015 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in traffic flows. This paper presents a solution to enable these networks with the ability to self-adapt their clusters’ duty-cycle and scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation using commercially available technology on a Structural Health Monitoring application scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ao longo dos últimos anos, acompanhada da evolução tecnológica, da dificuldade da inspeção visual e da consciencialização dos efeitos de uma má inspeção, verificou-se uma maior sensibilidade para a importância da monitorização estrutural, principalmente nas grandes infra-estruturas de engenharia civil. Os sistemas de monitorização estrutural permitem o acompanhamento contínuo do comportamento de uma determinada estrutura de tal forma que com os dados obtidos, é possível avaliar alterações no comportamento da mesma. Com isso, tem-se desenvolvido e implementado estratégias de identificação de danos estruturais com o intuito de aumentar a fiabilidade estrutural e evitar precocemente que alterações na condição da estrutura possam evoluir para situações mais severas. Neste contexto, a primeira parte desta dissertação consiste numa introdução à monitorização estrutural e à deteção de dano estrutural. Relativamente à monitorização, são expostos os seus objetivos e os princípios da sua aplicação. Conjuntamente são apresentados e descritos os principais sensores e são explicadas as funcionalidades de um sistema de aquisição de dados. O segundo tema aborda a importância da deteção de dano introduzindo os métodos estudados neste trabalho. Destaca-se o método das linhas de influência, o método da curvatura dos modos de vibração e o método da transformada de wavelet. Na segunda parte desta dissertação são apresentados dois casos de estudo. O primeiro estudo apresenta uma componente numérica e uma componente experimental. Estuda-se um modelo de viga que se encontra submetida a vários cenários de dano e valida-se a capacidade do método das linhas de influência em detetar e localizar essas anomalias. O segundo estudo consiste na modelação numérica de uma ponte real, na posterior simulação de cenários de dano e na análise comparativa da eficácia de cada um dos três métodos de deteção de dano na identificação e localização dos danos simulados. Por último, são apresentadas as principais conclusões deste trabalho e são sugeridos alguns tópicos a explorar na elaboração de trabalhos futuros.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. Because many Iowa bridges require repair or replacement with a relatively limited funding base, there is a need to develop new bridge materials that may lead to longer life spans and reduced life-cycle costs. In addition, new and effective methods for determining the condition of structures are needed to identify when the useful life has expired or other maintenance is needed. Due to its unique alloy blend, high-performance steel (HPS) has been shown to have improved weldability, weathering capabilities, and fracture toughness than conventional structural steels. Since the development of HPS in the mid-1990s, numerous bridges using HPS girders have been constructed, and many have been economically built. The East 12th Street Bridge, which replaced a deteriorated box girder bridge, is Iowa’s first bridge constructed using HPS girders. The new structure is a two-span bridge that crosses I-235 in Des Moines, Iowa, providing one lane of traffic in each direction. A remote, continuous, fiber-optic based structural health monitoring (SHM) system for the bridge was developed using off-the-shelf technologies. In the system, sensors strategically located on the bridge collect raw strain data and then transfer the data via wireless communication to a gateway system at a nearby secure facility. The data are integrated and converted to text files before being uploaded automatically to a website that provides live strain data and a live video stream. A data storage/processing system at the Bridge Engineering Center in Ames, Iowa, permanently stores and processes the data files. Several processes are performed to check the overall system’s operation, eliminate temperature effects from the complete strain record, compute the global behavior of the bridge, and count strain cycles at the various sensor locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report is divided into two volumes. This volume (Volume I) summarizes a structural health monitoring (SHM) system that was developed for the Iowa DOT to remotely and continuously monitor fatigue critical bridges (FCB) to aid in the detection of crack formation. The developed FCB SHM system enables bridge owners to remotely monitor FCB for gradual or sudden damage formation. The SHM system utilizes fiber bragg grating (FBG) fiber optic sensors (FOSs) to measure strains at critical locations. The strain-based SHM system is trained with measured performance data to identify typical bridge response when subjected to ambient traffic loads, and that knowledge is used to evaluate newly collected data. At specified intervals, the SHM system autonomously generates evaluation reports that summarize the current behavior of the bridge. The evaluation reports are collected and distributed to the bridge owner for interpretation and decision making. Volume II summarizes the development and demonstration of an autonomous, continuous SHM system that can be used to monitor typical girder bridges. The developed SHM system can be grouped into two main categories: an office component and a field component. The office component is a structural analysis software program that can be used to generate thresholds which are used for identifying isolated events. The field component includes hardware and field monitoring software which performs data processing and evaluation. The hardware system consists of sensors, data acquisition equipment, and a communication system backbone. The field monitoring software has been developed such that, once started, it will operate autonomously with minimal user interaction. In general, the SHM system features two key uses. First, the system can be integrated into an active bridge management system that tracks usage and structural changes. Second, the system helps owners to identify damage and deterioration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. The state of Iowa thus follows the national trend of an aging infrastructure in dire need of repair or replacement with a relatively limited funding base. Therefore, there is a need to develop new materials with properties that may lead to longer life spans and reduced life-cycle costs. In addition, new methods for determining the condition of structures are needed to monitor the structures effectively and identify when the useful life of the structure has expired or other maintenance is needed. High-performance steel (HPS) has emerged as a material with enhanced weldability, weathering capabilities, and fracture toughness compared to conventional structural steels. In 2004, the Iowa Department of Transportation opened Iowa's first HPS girder bridge, the East 12th Street Bridge over I-235 in Des Moines, Iowa. The objective of this project was to evaluate HPS as a viable option for use in Iowa bridges with a continuous structural health monitoring (SHM) system. The scope of the project included documenting the construction of the East 12th Street Bridge and concurrently developing a remote, continuous SHM system using fiber-optic sensing technology to evaluate the structural performance of the bridge. The SHM system included bridge evaluation parameters, similar to design parameters used by bridge engineers, for evaluating the structure. Through the successful completion of this project, a baseline of bridge performance was established that can be used for continued long-term monitoring of the structure. In general, the structural performance of the HPS bridge exceeded the design parameters and is performing well. Although some problems were encountered with the SHM system, the system functions well and recommendations for improving the system have been made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)